Advertisement

The European Physical Journal D

, Volume 59, Issue 3, pp 389–398 | Cite as

Stabilizing dicyanoacetylene anions in planetary atmospheres: quantum dynamics of its transient negative ions

  • F. Sebastianelli
  • F. A. GianturcoEmail author
Atomic and Molecular Collisions

Abstract.

Quantum computations that follow the electron-attachment process at low energies (<10 eV) to the NCCCCN gaseous molecule are carried out in order to understand the role of transient negative ions (TNIs) which act as “doorway states" to molecular stabilization and/or fragmentation after resonant attachment of an environmental electron. The computed behaviour of the found TNIs suggests that an NCCCCN*- intermediate could be formed under conditions which justify and explain the existence of stable carbonaceous anions in the interstellar medium, while further anionic fragments of the title molecule, already seen in laboratory experiments, are also identified by the present calculations.

Keywords

Triple Bond Resonant State Excess Electron Planetary Atmosphere Partial Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    e.g. see: J.C. Dyson, D.A. Williams, The Physics of the Interstellar Medium (Taylor & Francis, New York, 1997) Google Scholar
  2. 2.
    E. Herbst, Nature 289, 656 (1981) CrossRefADSGoogle Scholar
  3. 3.
    T.J. Millar, E. Herbst, R.P.A. Bettens, MNRAS 316, 195 (2000) CrossRefADSGoogle Scholar
  4. 4.
    S. Petrie, E. Herbst, Ap. J. 491, 210 (1997) CrossRefADSGoogle Scholar
  5. 5.
    E. Herbst, Y. Osamura, Ap. J. 679, 1670 (2008) CrossRefADSGoogle Scholar
  6. 6.
    N. Sakai, T. Sakai, S. Yamamoto, Ap. J. 673, L71 (2008) CrossRefADSGoogle Scholar
  7. 7.
    M.C. McCarthy, C.A. Gottlieb, H. Gupta, P. Thaddeus, Ap. J. 651, 6141 (2006) Google Scholar
  8. 8.
    S. Brunken, H. Gupta, C.A. Gottlieb, M.C. McCarthy, P. Thaddeus, Ap. J. 664, L43 (2007) CrossRefADSGoogle Scholar
  9. 9.
    K. Graupner, T.A. Field, G.C. Saunders, Ap. J. 685, L95 (2008) CrossRefADSGoogle Scholar
  10. 10.
    R.R. Lucchese, F.A. Gianturco, Int. Rev. Phys. Chem. 15, 429 (1996) CrossRefGoogle Scholar
  11. 11.
    H.H. Erhardt et al. Electron Collision with Molecules, Clusters and Surfaces (Plenum Press, New York, 1994) Google Scholar
  12. 12.
    C. Lee, W. Wang, R.G. Parr, Phys. Rev. B 37, 785 (1998) CrossRefADSGoogle Scholar
  13. 13.
    S.J. Hara, J. Phys. Soc. Jpn 22, 710 (1967) CrossRefADSGoogle Scholar
  14. 14.
    S. Salvini, D.G. Thompson, J. Phys. B 14, 3797 (1981) CrossRefADSGoogle Scholar
  15. 15.
    F.A. Gianturco, R.R. Lucchese, J. Chem. Phys. 111, 6769 (1999) CrossRefADSGoogle Scholar
  16. 16.
    F.A. Gianturco, R.R. Lucchese, J. Phys. B 29, 3955 (1996) CrossRefADSGoogle Scholar
  17. 17.
    J.R. Taylor, Scattering theory (Wiley, New York, 1972) Google Scholar
  18. 18.
    A. Igarashi, I. Shimamura, Phys. Rev. A 70, 012706 (2004) CrossRefADSGoogle Scholar
  19. 19.
    F.T. Smith, Phys. Rev. 118, 349 (1960) CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    L. Eisenbud, Ph.D. thesis, Princeton, 1948 Google Scholar
  21. 21.
    E.P. Wigner, Phys. Rev. 98, 145 (1955) zbMATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    K.W. Brown, J.W. Nibler, K. Hedberg, L. Hedberg, J. Phys. Chem. 93, 5679 (1989) CrossRefGoogle Scholar
  23. 23.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford, CT, 2004) Google Scholar
  24. 24.
    F. Winther, M. Schönoff, J. Mol. Spectrosc. 186, 54 (1997) CrossRefADSGoogle Scholar
  25. 25.
    R.K. Khanna, M.A. Perera-Jarmen, M.J. Ospina, Spectrochim. Acta 43, 421 (1987) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Chemistry and CNISMUniversity of Rome ‘La Sapienza’RomeItaly

Personalised recommendations