Advertisement

The European Physical Journal D

, Volume 59, Issue 3, pp 443–449 | Cite as

Ultrashort soliton pulses in the modified nonlinear Schrödinger equation with distributed coefficients in inhomogeneous fibers

  • Hai-Qiang Zhang
  • Bo TianEmail author
  • Wen-Jun Liu
  • Yu-Shan Xue
Nonlinear Dynamics

Abstract.

This paper investigates a variable-coefficient modified nonlinear Schrödinger model for describing the ultrashort pulse dynamics with the distributed dispersion, self-phase modulation, self-steepening and linear gain/loss. Under specified soliton management conditions, the bright one- and two-soliton solutions are analytically derived by the Hiroa bilinear method. Dynamical behaviors and main features of the ultrashort pulse propagation in inhomogeneous fibers are discussed by analyzing some important physical quantities. Additionally, interactions of two neighboring ultrashort pulses with varying management parameters are investigated in detail. Results obtained in this paper will be of certain value to the studies on the propagation and application of the ultrashort pulse in the dispersion-managed fiber system.

Keywords

Soliton Soliton Solution Ultrashort Pulse Optical Soliton Bright Soliton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Hasegawa, Y. Kodama, Solitons in Optical Communications (Oxford University Press, Oxford, 1995) Google Scholar
  2. 2.
    G.P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 2001) Google Scholar
  3. 3.
    F. Abdullaev, S. Darmanyan, P. Khabibullaev, Optical Solitons (Springer-Verlag, Berlin, 1991) Google Scholar
  4. 4.
    K. Nakkeeran, Phys.Rev. E 62, 1313 (2000) CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    S.H. Chen, L. Yi, Phys. Rev. E 71, 016606 (2005) CrossRefADSGoogle Scholar
  6. 6.
    J.P. Tian, G.S. Zhou, Opt. Commun. 262, 257 (2006) CrossRefADSGoogle Scholar
  7. 7.
    J.P. Tian, J.H. Li, L.S. Kang, G.S. Zhou, Phys.Scr. 72, 394 (2005) zbMATHCrossRefADSGoogle Scholar
  8. 8.
    B. Tian, Y.T. Gao, H.W. Zhu, Phys. Lett. A 366, 223 (2007) CrossRefADSGoogle Scholar
  9. 9.
    T. Xu, J. Li, H.Q.Zhang, Y.X. Zhang, W. Hu, Y.T. Gao, B. Tian, Phys.Lett. A 372, 1990 (2008) CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    W.J. Liu, B. Tian, H.Q. Zhang, Phys. Rev. E 78, 066613 (2008) CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    P. Dumais, F. Gonthier, S. Lacroix, J. Bures, A. Villeneuve, P.G.J. Wigley, G.I. Stegeman, Opt. Lett. 18, 1996 (1993) CrossRefADSGoogle Scholar
  12. 12.
    S. Burtsev, D.J. Kaup, B.A. Malomed, Phys. Rev. E 52, 4474 (1995) CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    V.N. Serkin, A. Hasegawa, Phys. Rev. Lett. 85, 4502 (2000) CrossRefADSGoogle Scholar
  14. 14.
    V.I. Kruglov, A.C. Peacock, J.D. Harvey, Phys. Rev.Lett. 90, 113902 (2003) CrossRefADSGoogle Scholar
  15. 15.
    T.I. Lakoba, D.J. Kaup, Phys. Rev. E 58, 6728 (1998) CrossRefADSGoogle Scholar
  16. 16.
    I. Gabitov, E.G. Shapiro, S.K. Turitsyn, Phys. Rev. E 55, 3624 (1997) CrossRefADSGoogle Scholar
  17. 17.
    B.A. Malomed, Soliton Management in Periodic Systems (Springer, New York, 2006) Google Scholar
  18. 18.
    J.R. Taylor, Optical Solitons-Theory and Experiment (Cambridge University Press, Cambridge, 1992) Google Scholar
  19. 19.
    T. Xu, B. Tian, L.L. Li, X. Lü, C. Zhang, Phys.Plasmas 15, 102307 (2008) CrossRefADSGoogle Scholar
  20. 20.
    K.J. Blow, N.J. Doran, Opt. Commun. 42, 403 (1982) CrossRefADSGoogle Scholar
  21. 21.
    Y. Kodama, M.J. Ablowitz, Stud. Appl. Math. 64, 225 (1981) zbMATHMathSciNetADSGoogle Scholar
  22. 22.
    D. Anderson, Phys. Rev. A 27, 3185 (1983) ADSGoogle Scholar
  23. 23.
    O.V. Sinkin, R. Holzlöhner, J. Zweck, C.R. Menyuk, J. Lightwave Technol. 21, 61 (2003) CrossRefADSGoogle Scholar
  24. 24.
    K. Porsezian, V.C. Kuriakose, Optical Solitons: Theoretical and Experimental Challenges, in System Analysis Using the Split Operator Method, K.J. Blow (Springer-Verlag, Berlin Heidelberg, 2002) pp. 127–140 Google Scholar
  25. 25.
    R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004) Google Scholar
  26. 26.
    R. Radhakrishnan, M. Lakshmanan, J. Hietarinta, Phys. Rev.E 56, 2213 (1997) CrossRefADSGoogle Scholar
  27. 27.
    T. Kanna, M. Lakshmanan, Phys. Rev. Lett. 86, 5043 (2001) CrossRefADSGoogle Scholar
  28. 28.
    T. Kanna, M. Lakshmanan, P.T. Dinda, N. Akhmediev, Phys.Rev. E 73, 026604 (2006) CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    H.Q. Zhang, T. Xu, J. Li, B. Tian, Phys. Rev. E 77, 026605 (2008) CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    W.J. Liu, B. Tian, H.Q. Zhang, L.L.Li, Y.S. Xue, Phys. Rev. E 77, 066605 (2008) CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    W.J. Liu, B. Tian, H.Q. Zhang, T. Xu, H. Li, Phys. Rev. A 79, 063810 (2009) CrossRefADSGoogle Scholar
  32. 32.
    W.P. Hong, Phys. Lett. A 361, 520 (2007) zbMATHCrossRefADSGoogle Scholar
  33. 33.
    Y.T. Gao, B. Tian, Phys. Plasmas 13, 112901 (2006) CrossRefADSGoogle Scholar
  34. 34.
    Y.T. Gao, B. Tian, Phys. Plasmas (Lett.) 13, 120703 (2006) ADSGoogle Scholar
  35. 35.
    Y.T. Gao, B. Tian, Phys. Lett. A 361, 523 (2007) zbMATHCrossRefADSGoogle Scholar
  36. 36.
    Y.T. Gao, B. Tian, Europhys. Lett. 77, 15001 (2007) CrossRefADSGoogle Scholar
  37. 37.
    B. Tian, W.R.Shan, C.Y. Zhang, G.M. Wei, Y.T. Gao, Eur. Phys. J.B 47, 329 (2005) CrossRefADSGoogle Scholar
  38. 38.
    M.P. Barnett, J.F. Capitani, J. Von Zur Gathen, J.Gerhard, Int. J. Quantum Chem. 100, 80 (2004) CrossRefGoogle Scholar
  39. 39.
    B. Tian, G.M. Wei, C.Y. Zhang, W.R. Shan, Y.T. Gao, Phys.Lett. A 356, 8 (2006) zbMATHCrossRefADSGoogle Scholar
  40. 40.
    B. Tian, Y.T. Gao, Phys.Plasmas 12, 070703 (2005) CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    L.F. Mollenauer, R.H. Stolen, M.N. Islam, Opt. Lett.10, 229 (1985) Google Scholar
  42. 42.
    A. Hasegawa, Opt. Lett. 8, 650 (1983) CrossRefADSGoogle Scholar
  43. 43.
    A. Hasegawa, Rep. Prog. Phys. 65, 999 (2002) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hai-Qiang Zhang
    • 1
    • 2
  • Bo Tian
    • 1
    • 2
    • 3
    Email author
  • Wen-Jun Liu
    • 2
  • Yu-Shan Xue
    • 2
  1. 1.State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and AstronauticsBeijingChina
  2. 2.School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina
  3. 3.Key Laboratory of Information Photonics and Optical Communications (BUPT), Ministry of EducationBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations