Advertisement

The European Physical Journal D

, Volume 59, Issue 1, pp 53–57 | Cite as

Management of the electrical injection uniformity in broad-area top-emitting VCSELs

  • T. Camps
  • V. Bardinal
  • E. Havard
  • M. Condé
  • C. Fontaine
  • G. AlmuneauEmail author
  • L. Salvagnac
  • S. Pinaud
  • J. B. Doucet
Regular Article

Abstract.

The electrical properties of broad-area 850 nm top emitting VCSELs have been investigated in order to improve carrier injection uniformity in their active zone. First, we have demonstrated using an electrical simulation tool that a multi-point localized injection design associated with a spreading layer at the top of the device (ITO) can lead to a significant improvement of carrier injection and on its spatial distribution. Secondly, the electrical contrast achievable by applying this method with localized etchings has been experimentally measured. Finally, stripe-shaped devices with output power up to 50 mW in a continuous-wave operation at room temperature have been demonstrated.

Keywords

Soliton GaAs Carrier Distribution Cavity Soliton Spreading Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.G. Deppe, D.L. Huffaker, J. Shin, Q. Deng, IEEE Phot. Technol. Lett. 1, 965 (1995) CrossRefADSGoogle Scholar
  2. 2.
    Y. Hayashi, T. Mukaihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, K. Iga, Elect. Lett. 31, 560 (1995) CrossRefADSGoogle Scholar
  3. 3.
    M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H.J. Unold, K.J. Ebeling, IEEE J. Select. Top. Quantum Electron. 5, 495 (1999) CrossRefGoogle Scholar
  4. 4.
    P. Souverain, T. Camps, M. Faleh, A. Cazarre, J. Tasselli, A. Marty, J.P. Bailbe, Microelectron. Reliab. 38, 553 (1998) CrossRefGoogle Scholar
  5. 5.
    W.J. Alford, T.D. Raymond, A.A. Allerman, J. Opt. Soc. Am. B 19, 663 (2002) CrossRefADSGoogle Scholar
  6. 6.
    S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, Nature 419, 699 (2002) CrossRefADSGoogle Scholar
  7. 7.
    M. Osinski, W. Nakwaski, in Vertical-Cavity Surface-Emitting Laser Devices, edited by H. Li, K. Iga, 1st edn. (Springer, Berlin, 2003) Google Scholar
  8. 8.
    C. Degen, I. Fischer, W. Elsässer, Opt. Express 5, 38 (1999) CrossRefADSGoogle Scholar
  9. 9.
    J. Piprek, in Semiconductor Optoelectronic Devices, edited by J. Piprek, 1st edn. (Academic Press, London, 2003) Google Scholar
  10. 10.
    R. Michalzik, M. Grabherr, K.J. Ebeling, SPIE 3286, 206 (1998) CrossRefADSGoogle Scholar
  11. 11.
  12. 12.
    C.L. Chua, R.L. Thornton, D.W. Treat, V.K. Yang, C.C. Dunnrowicz, IEEE Photo. Technol. Lett. 9, 551 (1997) CrossRefADSGoogle Scholar
  13. 13.
    E. Havard, T. Camps, V. Bardinal, L. Salvagnac, C. Armand, C. Fontaine, S. Pinaud, Semicond. Sci. Technol. 23, 035001 (2008) CrossRefADSGoogle Scholar
  14. 14.
    C. Amat, G. Almuneau, P. Gallo, L. Jalabert, S. Moumdji, P. Dubreuil, T. Camps, J.B. Doucet, E. Havard, V. Bardinal, C. Fontaine, A. Munoz-Yague, Elect. Lett. 43, 730 (2007) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • T. Camps
    • 1
    • 2
  • V. Bardinal
    • 1
    • 2
  • E. Havard
    • 1
    • 2
  • M. Condé
    • 1
    • 2
  • C. Fontaine
    • 1
    • 2
  • G. Almuneau
    • 1
    • 2
    Email author
  • L. Salvagnac
    • 1
    • 2
  • S. Pinaud
    • 1
    • 2
  • J. B. Doucet
    • 1
    • 2
  1. 1.CNRS, LAASToulouseFrance
  2. 2.Université de Toulouse, UPS, INSA, INP, ISAE, LAASToulouseFrance

Personalised recommendations