The European Physical Journal D

, Volume 60, Issue 1, pp 85–92 | Cite as

Effect of a magnetic field on the track structure of low-energy electrons: a Monte Carlo study

  • M. U. BugEmail author
  • E. Gargioni
  • S. Guatelli
  • S. Incerti
  • H. Rabus
  • R. Schulte
  • A. B. Rosenfeld
Topical issue on Molecular level assessments of radiation biodamage


The increasing use of MRI-guided radiation therapy evokes the necessity to investigate the potential impact of a magnetic field on the biological effectiveness of therapeutic radiation beams. While it is known that a magnetic field, applied during irradiation, can improve the macroscopic absorbed dose distribution of electrons in the tumor region, effects on the microscopic distribution of energy depositions and ionizations have not yet been investigated. An effect on the number of ionizations in a DNA segment, which is related to initial DNA damage in form of complex strand breaks, could be beneficial in radiation therapy. In this work we studied the effects of a magnetic field on the pattern of ionizations at nanometric level by means of Monte Carlo simulations using the Geant4-DNA toolkit. The track structure of low-energy electrons in the presence of a uniform static magnetic field of strength up to 14 T was calculated for a simplified DNA segment model in form of a water cylinder. In the case that no magnetic field is applied, nanodosimetric results obtained with Geant4-DNA were compared with those from the PTB track structure code. The obtained results suggest that any potential enhancement of complexity of DNA strand breaks induced by irradiation in a magnetic field is not related to modifications of the low-energy secondary electrons track structure.


Monte Carlo Cluster Size Monte Carlo Code Initial Kinetic Energy Track Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Grosswendt, Radiat. Environ. Biophys. 41, 103 (2002) Google Scholar
  2. 2.
    B. Grosswendt, Radiat. Prot. Dosim. 115, 1 (2005) CrossRefGoogle Scholar
  3. 3.
    R.W. Schulte, A.J. Wroe, V.A. Bashkirov, G.Y. Garty, A. Breskin, R. Chechik, S. Shchemelinin, E. Gargioni, B. Grosswendt, A.B. Rosenfeld, Z. Med. Phys. 18, 286 (2008) Google Scholar
  4. 4.
    H. Nikjoo, D.T. Goodhead, Phys. Med. Biol. 36, 229 (1991) CrossRefGoogle Scholar
  5. 5.
    B.M. Oborn, P.E. Metcalfe, M.J. Butson, A.B. Rosenfeld, Med. Phys. 36, 3549 (2009) CrossRefGoogle Scholar
  6. 6.
    Y. Chen, A.F. Bielajew, D.W. Litzenberg, J.M. Moran, F.D. Beccetti, Med. Phys. 32, 3810 (2005) CrossRefGoogle Scholar
  7. 7.
    H. Nettelbeck, G. Takacs, M. Lerch, A.B. Rosenfeld, Phys. Med. Biol. 53, 5123 (2008) CrossRefGoogle Scholar
  8. 8.
    E. Nardi, R. Schulte, Med. Phys. 27, 2369 (2000) CrossRefGoogle Scholar
  9. 9.
    B.W. Raaymakers, A.J.E. Raaijmakers, J.J.W. Lagendijk, Phys. Med. Biol. 53, 5615 (2008) CrossRefGoogle Scholar
  10. 10.
    S. Rockwell, Int. J. Radiat. Biol. 31, 153 (1977) CrossRefGoogle Scholar
  11. 11.
    R. Nath, R.J. Schulz, P. Bongiorni, Int. J. Radiat. Biol. 38, 285 (1980) CrossRefGoogle Scholar
  12. 12.
    T. Nakahara, H. Yaguchi, M. Yoshida, J. Miyakoshi, Radiology 224, 817 (2002) CrossRefGoogle Scholar
  13. 13.
    G. Kaplan, L. Bendall, Westmead Institute for Cancer Research (WMI), Australia, private communication Google Scholar
  14. 14.
    Y. Chen, B. Lau, F. Becchetti, Med. Phys. 34, 2495 (2007) CrossRefGoogle Scholar
  15. 15.
  16. 16.
    H. Nikjoo, P. O’Neill, D.T. Goodhead, M. Terrissol, Int. J. Radiat. Biol. 71, 467 (1997) CrossRefGoogle Scholar
  17. 17.
    C.-K.C. Wang, X. Zhang, Phys. Med. Biol. 51, 6087 (2006) CrossRefGoogle Scholar
  18. 18.
    S. Pszona, J. Kula, S. Marjanska, Nucl. Instrum. Meth. A 447, 601 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    L. DeNardo, V. Conte, M. Poggi, S. Canella, P. Colautti, D. Moro, G. Tornielli, Radiat. Prot. Dosim. 126, 453 (2007) CrossRefGoogle Scholar
  20. 20.
    G. Garty, R. Schulte, S. Shchemelinin, B. Grosswendt, C. Leloup, G. Assaf, A. Breskin, R. Chechik, V. Bashkirov, Radiat. Prot. Dosim. 122, 451 (2006) CrossRefGoogle Scholar
  21. 21.
    G. Garty, R. Schulte, S. Shchemelinin, C. Leloup, G. Assaf, A. Breskin, R. Chechik, V. Bashkirov, J. Milligan, B. Grosswendt, Phys. Mod. Biol. 55, 761 (2010) CrossRefGoogle Scholar
  22. 22.
    S. Agostinelli et al., Nucl. Instrum. Meth. A 506, 250 (2003) ADSCrossRefGoogle Scholar
  23. 23.
    J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    S. Chauvie, Z. Francis, S. Guatelli, S. Incerti, B. Mascialino, F. Moretto, P. Nieminen, M.G. Pia, IEEE Trans. Nucl. Sci. 54, 2619 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    S. Chauvie, Z. Francis, S. Guatelli, S. Incerti, B. Mascialino, G. Montarou, P. Moretto, P. Nieminen, M.G. Pia, Radiat. Res. 166, 652 (2006) CrossRefGoogle Scholar
  26. 26.
    S. Guatelli, B. Mascialino, L. Moneta, I. Papadopoulos, A. Pfeiffer, M.G. Pia, M. Piergentili, IEEE Nuclear Science Symposium Conference Record 4, 2100 (2004) CrossRefGoogle Scholar
  27. 27.
    W. Friedland, P. Jacob, H.G. Paretzke, M. Merzagora, A. Ottolenghi, Radiat. Environ. Biophys. 38, 39 (1999) CrossRefGoogle Scholar
  28. 28.
    S. Incerti, G. Baldacchino, M. Bernal, R. Capra, C. Champion, Z. Francis, S. Guatelli, P. Guye, A. Mantero, B. Mascialino, The Geant4-DNA project, in Proceedings of the Asia Simulation Conference 2009 (Shiga, Japan, 2009), e-print arXiv:0910.5684v1 Google Scholar
  29. 29.
    M. Dingfelder, D. Hantke, M. Inokuti, H.G. Paretzke, Radiat. Phys. Chem. 53, 1 (1998) CrossRefGoogle Scholar
  30. 30.
    D. Emfietzoglou, K. Karava, G. Papamichael, M. Moscovitch, Phys. Med. Biol. 48, 2355 (2003) CrossRefGoogle Scholar
  31. 31.
    B.A. Wichmann, I.D. Hill, Appl. Stat. 31, 188 (1982) CrossRefGoogle Scholar
  32. 32.
    ISO/IEC Guide 98:1995, Guide to the Expression of Uncertainty in Measurement (International Organisation for Standardisation, Geneva, Switzerland, 1995), ISBN 92-67-10188-9 edition Google Scholar
  33. 33.
    M. Iwasaka, M. Ikehata, J. Miyakoshi, S. Ueno, Bioelectrochemistry 65, 59 (2004) CrossRefGoogle Scholar
  34. 34.
    L. Dini, L. Abbro, Micron 26, 195 (2005) CrossRefGoogle Scholar
  35. 35.
    J. McCann, F. Dietrich, C. Rafferty, Mutat. Res. 411, 45 (1998) CrossRefGoogle Scholar
  36. 36.
    F.S. Barnes, IEEE Trans. Magn. 41, 4219 (2005) ADSCrossRefGoogle Scholar
  37. 37.
    Y. Takashima, J. Miyakoshi, M. Ikehata, M. Iwasaka, S. Ueno, T. Koana, J. Radiat. Res. 45, 393 (2004) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • M. U. Bug
    • 1
    Email author
  • E. Gargioni
    • 2
  • S. Guatelli
    • 3
  • S. Incerti
    • 4
  • H. Rabus
    • 1
  • R. Schulte
    • 5
  • A. B. Rosenfeld
    • 3
  1. 1.Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100BraunschweigGermany
  2. 2.Universitätsklinikum Hamburg-Eppendorf (UKE)HamburgGermany
  3. 3.Centre for Medical Radiation Physics (CMRP), University of WollongongNSWAustralia
  4. 4.Centre d’Études Nucléaires de Bordeaux-Gradignan (CENBG), IN2P3/CNRS, Bordeaux UniversityGradignan CedexFrance
  5. 5.Loma Linda University Medical Center (LLUMC)Loma LindaUSA

Personalised recommendations