Advertisement

The European Physical Journal D

, Volume 60, Issue 1, pp 137–156 | Cite as

Ultrafast resonance energy transfer in bio-molecular systems

  • P. K. Verma
  • S. K. PalEmail author
Topical issue on Molecular level assessments of radiation biodamage

Abstract

In this article, we present our consistent efforts to explore the dynamical pathways of the migration of electronic radiation by using ultrafast (picosecond/femtosecond time scales) Förster resonance energy transfer (FRET) technique. The ultrafast non-radiative energy migration from an intrinsic donor fluorophore (Tryptophan, Trp214) present in domain IIA of a transporter protein human serum albumin (HSA) to various non-covalently/covalently attached organic/inorganic chromophores including photoporphyrin IX (PPIX), polyoxovanadate [V15As6O42(H2O)]-6 clusters (denoted as V15) and CdS quantum dots (QDs) has been explored. We have also used other covalently/non-covalently attached extrinsic fluorogenic donors (NPA, ANS) in order to exploit the dynamics of resonance energy migration of an enzyme α-chymotrypsin (CHT). The use of extrinsic donor instead of intrinsic Trp in CHT avoids ambiguity in the location of the donor molecule as seven tryptophans are present in the enzyme CHT. We have labeled CHT with ANS (1-anilinonaphthalene-8-sulfonate) and NPA (4-nitrophenyl anthranilate) and studied FRET. Labeling of DNA has also been done in the context that the DNA bases have very low quantum yield for fluorescence. We have also validated FRET model over nano-surface energy transfer technique (NSET) in the case of quantum clusters and applied the findings to other QDs. The use of QDs over organic fluorophore was justified by least photo-bleaching of QDs compared to organic fluorophore. Our studies may find relevance in the exploration of alternate pathway for ultrafast migration of electronic radiation through FRET to minimize the detrimental effect of UV radiation in living organism.

Keywords

Human Serum Albumin Ethidium Bromide American Chemical Society Resonance Energy Transfer EtBr 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-L. Ravanat, T. Douki, J. Cadet, J. Photochem. Photobiol. B: Biol. 63, 88 (2001) CrossRefGoogle Scholar
  2. 2.
    J.-M.L. Pecourt, J. Peon, B. Kohler, J. Am. Chem. Soc. 123, 10370 (2001) CrossRefGoogle Scholar
  3. 3.
    O.D. Schärer, Angew. Chem. 115, 3052 (2003) CrossRefGoogle Scholar
  4. 4.
    M.K. Cichon, S.A. Arnold, T. Carell, Angew. Chem. Int. Ed. 41, 767 (2002) CrossRefGoogle Scholar
  5. 5.
    J.D. Watson, F.H.C. Crick, Nature 171, 964 (1953) ADSCrossRefGoogle Scholar
  6. 6.
    E. Chargaff, Science 172, 637 (1971) ADSCrossRefGoogle Scholar
  7. 7.
    P.H. Clingen, C.F. Arlett, L. Roza, T. Mori, O. Nikaido, M.H.L. Green, Cancer Res. 55, 2245 (1995) Google Scholar
  8. 8.
    A. Sancar, Chem. Rev. 103, 2203 (2003) CrossRefGoogle Scholar
  9. 9.
    A. Sancar, Biochemistry 33, 2 (1994) CrossRefGoogle Scholar
  10. 10.
    P.F. Heelis, R.F. Hartman, S.D. Rose, J. Photochem. Photobiol. A: Chem. 95, 89 (1996) CrossRefGoogle Scholar
  11. 11.
    A.K. Shaw, S.K. Pal, J. Photochem. Photobiol. B Biol. 90, 69 (2008) CrossRefGoogle Scholar
  12. 12.
    R.K. Mitra, P.K. Verma, D. Wulferding, D. Menzel, T. Mitra, A.M. Todea, P. Lemmens, A. Mueller, S.K. Pal, Chem. Phys. Chem. 11, 389 (2010) Google Scholar
  13. 13.
    R. Sarkar, S.S. Narayanan, L.-O. Pålsson, F. Dias, A. Monkman, S.K. Pal, J. Phys. Chem. B 111, 12294 (2007) CrossRefGoogle Scholar
  14. 14.
    D. Banerjee, S.K. Pal, J. Phys. Chem. B 111, 5047 (2007) CrossRefGoogle Scholar
  15. 15.
    L. Stryer, Ann. Rev. Biochem. 47, 819 (1978) CrossRefGoogle Scholar
  16. 16.
    J.R. Lakowicz, Principles of fluorescence spectroscopy (Kluwer Academic/Plenum, New York, 1999) Google Scholar
  17. 17.
    S.E. Braslavsky, E. Fron, H.B. Rodríguez, E.S. Román, G.D. Scholes, G. Schweitzer, B. Valeur, J. Wirz, Photochem. Photobiol. Sci. 7, 1444 (2008) CrossRefGoogle Scholar
  18. 18.
    P. Majumder, R. Sarkar, A.K. Shaw, A. Chakraborty, S.K. Pal, J. Colloid Interface Sci. 290, 462 (2005) CrossRefGoogle Scholar
  19. 19.
    M. Montalti, N. Zaccheroni, L. Prodi, N. O’Reilly, S.L. James, J. Am. Chem. Soc. 129, 2418 (2007) CrossRefGoogle Scholar
  20. 20.
    S.-J. Chen, H.-T. Chang, Anal. Chem. 76, 3727 (2004) CrossRefGoogle Scholar
  21. 21.
    B.N.J. Persson, N.D. Lang, Phys. Rev. B 26, 5409 (1982) ADSCrossRefGoogle Scholar
  22. 22.
    D. Craig, T. Thirunamachandra, Molecular quantum Electrodynamics (Academic Press, London, 1984) Google Scholar
  23. 23.
    D.V. O’Conner, D. Philips, Time Correlated Single Photon Counting (Academic Press, London, 1984) Google Scholar
  24. 24.
    N.C. Maiti, S. Mazumdar, N. Periasamy, J. Phys. Chem. 99, 10708 (1995) CrossRefGoogle Scholar
  25. 25.
    M. Wardell, Z. Wang, J.X. Ho, J. Robert, F. Florian Ruker, J. Ruble, D.C. Carter, Biochem. Biophys. Res. Comm. 291, 813 (2002) CrossRefGoogle Scholar
  26. 26.
    R. Jin, K.J. Breslauer, Proc. Natl. Acad. Sci. USA 85, 8939 (1988) ADSCrossRefGoogle Scholar
  27. 27.
    D.P. Millar, R.J. Robbins, A.H. Zewail, Proc. Natl. Acad. Sci. USA 77, 5593 (1980) ADSCrossRefGoogle Scholar
  28. 28.
    R. Sarkar, S.K. Pal, Biopolymers 83, 675 (2006) CrossRefGoogle Scholar
  29. 29.
    S. Murata, J. Kuśba, G. Piszczek, I. Gryczynski, J.R. Lakowicz, Biopolymers 57, 306 (2000) CrossRefGoogle Scholar
  30. 30.
    O.V. Tsodikov, R.M. Saecker, S.E. Melcher, M.M. Levandoski, D.E. Frank, M.W. Capp, M.T.J. Record, J. Mol. Biol. 294, 639 (1999) CrossRefGoogle Scholar
  31. 31.
    M.C. Vega, I.G. Saez, J. Aymami, R. Eritja, G.A.V. D. Marel, J.H. V. Boom, A. Rich M. Coll, Eur. J. Biochem. 222, 721 (1994) CrossRefGoogle Scholar
  32. 32.
    M. Tsuboi, J.M. Benevides, G.J.J. Thomas, Biophys. J. 92, 928 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    M. Levitt, Proc. Natl. Acad. Sci. USA 75, 640 (1978) ADSCrossRefGoogle Scholar
  34. 34.
    S.S. Narayanan, S.K. Pal, Langmuir 23, 6712 (2007) CrossRefGoogle Scholar
  35. 35.
    J.D. Johnson, M.A. El-Bayoumi, L.D. Weber, A. Tulinsky, Biochemistry 18, 1292 (1979) CrossRefGoogle Scholar
  36. 36.
    L.D. Weber, A. Tulinsky, J.D. Johnson, M.A. El-Bayoumi, Biochem. 18, 1297 (1979) CrossRefGoogle Scholar
  37. 37.
    B. Saif, R.K. Mohr, C.J. Montrose, T.A. Litovitz, Biopolymers 31, 1171 (1991) CrossRefGoogle Scholar
  38. 38.
    M.A.H. Muhammed, A.K. Shaw, S.K. Pal, T. Pradeep, J. Phys. Chem. C 112, 14324 (2008) CrossRefGoogle Scholar
  39. 39.
    S.S. Narayanan, S.S. Sinha, S.K. Pal, J. Phys. Chem. C 112, 12716 (2008) CrossRefGoogle Scholar
  40. 40.
    F.M. Hamer, The Chemistry of Heterocyclic Compound. The Cyanine Dyes and Related Compounds (Interscience, New York, 1963) Google Scholar
  41. 41.
    A.C.S. Samia, X. Chen, B.C., J. Am. Chem. Soc. 125, 15736 (2003) CrossRefGoogle Scholar
  42. 42.
    C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005) CrossRefGoogle Scholar
  43. 43.
    M.G. Bawendi, P.J. Carroll, W.L. Wilson, L.E. Brus, J. Chem. Phys. 96, 946 (1992) ADSCrossRefGoogle Scholar
  44. 44.
    J.M. Tsay, M. Trzoss, L. Shi, X. Kong, M. Selke, M.E. Jung, S. Weiss, J. Am. Chem. Soc. 129, 6865 (2007) CrossRefGoogle Scholar
  45. 45.
    E.K.L. Yeow, K.P. Ghiggino, J.N.H. Reek, M.J. Crossley, A.W. Bosman, A.P.H.J. Schenning, E.W. Meijer, J. Phys. Chem. B 104, 2596 (2000) CrossRefGoogle Scholar
  46. 46.
    S.S. Narayanan, R. Sarkar, S.S. Sinha, F. Dias, A. Monkman, S.K. Pal, J. Phys. Chem. C 112, 3423 (2008) CrossRefGoogle Scholar
  47. 47.
    S. Sugio, A. Kashima, S. Moshizuki, M. Noda, K. Kobayashi, Protein Eng. 12, 439 (1999) CrossRefGoogle Scholar
  48. 48.
    S.S. Sinha, R.K. Mitra, S.K. Pal, J. Phys. Chem. B 112, 4884 (2008) CrossRefGoogle Scholar
  49. 49.
    X.M. He, D.C. Carter, Nature 358, 209 (1992) ADSCrossRefGoogle Scholar
  50. 50.
    S.S. Narayanan, S.K. Pal, J. Phys. Chem. C 112, 4874 (2008) CrossRefGoogle Scholar
  51. 51.
    R.P. Haugland, L. Stryer, in Conformation of Biopolymers (Academic press, New York, 1967) Google Scholar
  52. 52.
    S.S. Narayanan, S.S. Sinha, P.K. Verma, S.K. Pal, Chem. Phys. Lett. 463, 160 (2008) ADSCrossRefGoogle Scholar
  53. 53.
    V.I. Klimov, D.W. McBranch, Phys. Rev. Lett. 80, 4028 (1998) ADSCrossRefGoogle Scholar
  54. 54.
    D.F. Underwood, T. Kippeny, S.J. Rosenthal, J. Phys. Chem. B 105, 436 (2001) CrossRefGoogle Scholar
  55. 55.
    M.D. Garrett, M.J. Bowers, J.R. McBride, R.L. Orndorff, S.J. Pennycook, S.J. Rosenthal, J. Phys. Chem. C 112, 436 (2008) CrossRefGoogle Scholar
  56. 56.
    V.I. Klimov, J. Phys. Chem. B 104, 6112 (2000) CrossRefGoogle Scholar
  57. 57.
    S. Jeong, M. Achermann, J. Nanda, S. Ivanov, V.I. Klimov, J.A. Hollingsworth, J. Am. Chem. Soc. 127, 10126 (2005) CrossRefGoogle Scholar
  58. 58.
    T. Inokuma, T. Arai, Phys. Rev. B 42, 11093 (1990) ADSCrossRefGoogle Scholar
  59. 59.
    W.R. Algar, U.J. Krull, Langmuir 22, 11346 (2006) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Unit for Nano Science & Technology, Department of Chemical Biological & Macromolecular SciencesS.N. Bose National Centre for Basic SciencesKolkataIndia

Personalised recommendations