The European Physical Journal D

, Volume 60, Issue 1, pp 51–58 | Cite as

Plasmid DNA damage by heavy ions at spread-out Bragg peak energies

  • H. M. DangEmail author
  • M. J. van Goethem
  • E. R. van der Graaf
  • S. Brandenburg
  • R. Hoekstra
  • T. SchlathölterEmail author
Topical issue on Molecular level assessments of radiation biodamage


Interaction of ionizing radiation with plasmid DNA can lead to formation of single strand breaks, double strand breaks and clustered lesions. We have investigated the response of the synthetic plasmid pBR322 in aqueous solution upon irradiation with 12C ions under spread-out Bragg peak conditions (densely ionizing) and with 137Cs γ-photons (sparsely ionizing) as a function of dose. To evaluate the relevance of indirect effects, i.e. influences of diffusion limited radical induced DNA damage triggered by water radiolysis, the experiments were performed at various concentrations of the radical scavenger mannitol. Agarose gel electrophoresis was employed to quantify the DNA damage. At low scavenger concentration for a given dose DNA damage is higher for γ-photons than for 12C. For the latter, the microscopic dose distribution is inhomogeneous, with very high dose deposited along the few tracks through the solution. This is in agreement with the concept that scavengers efficiently reduce damage for γ-photons, implying that the underlying damage mechanism is single strand break induction by OH radicals. For 12C induced damage, the fraction of SSB and DSB that is unaffected by radical scavengers and thus due to direct effect is quantified.


Linear Energy Transfer Single Strand Break Open Circular Supercoiled Plasmid Mannitol Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.A. Bernhard, D.M. Close, in Physics and Chemistry Basis of Biotechnology, edited by A. Mozurnder, Y. Hatano (Marcel Dekker, Inc., New York, 2004), pp. 434–473 Google Scholar
  2. 2.
    H.A. Schwarz, J. Phys. Chem. 75, 1069 (1928) Google Scholar
  3. 3.
    M.P. Gaigeot, R. Vuilleumier, C. Stia, M.E. Galassi, R. Rivarola, B. Gervais, M.F. Politis, J. Phys. B: At. Mol. Opt. Phys. 40, 2 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    C. von Sonntag, The Chemical Basis for Radiation Biology (Taylor and Francis, London, 1987) Google Scholar
  5. 5.
    K. Psonka-Antonczyk, T. Elsässer, E. Gudowska-Nowak, G. Taucher-Scholz, Radiat. Res. 172, 288 (2009) CrossRefGoogle Scholar
  6. 6.
    M. Belli, D.T. Goodhead, F. Ianzini, G. Simone, M.A. Tabocchini, Int. J. Radiat. Biol. 55, 93 (1989) CrossRefGoogle Scholar
  7. 7.
    T.J. Jenner, M. Belli, R. Cherubini, S. Finotto, G. Moschini, O. Sapora, G. Simone, M.A. Tabocchini, Int. J. Radiat. Biol. 61, 625 (1992) CrossRefGoogle Scholar
  8. 8.
    J.R. Milligan, J.A. Aguilera, J.F. Ward, Radiat. Res. 133, 151 (1993) CrossRefGoogle Scholar
  9. 9.
    J.R. Milligan, J.F. Ward, Radiat. Res. 137, 295 (1994) CrossRefGoogle Scholar
  10. 10.
    G.D.D. Jones, J.R. Milligan, J.F. Ward, P.M. Calabro-Jones, J.A. Aguilera, Radiat. Res. 136, 190 (1993) CrossRefGoogle Scholar
  11. 11.
    A.A. Stankus, M.A. Xapsos, C.J. Kolanko, H.M. Gerstenberg, W.F. Blakely, Int. J. Radiat. Biol. 68, 1 (1995) CrossRefGoogle Scholar
  12. 12.
    G. Taucher-Scholz, G. Kraft, Radiat. Res. 151, 595 (1999) CrossRefGoogle Scholar
  13. 13.
    S. Brons, G. Taucher-Scholz, M. Scholz, Radiat. Environ. Biophys. 42, 63 (2003) CrossRefGoogle Scholar
  14. 14.
    T. Elsässer, M. Krämer, M. Scholz, Int. J. Radiat. Oncol. Biol. Phys. 71, 866 (2008) Google Scholar
  15. 15.
    M. Beuve, Radiat. Res. 172, 394 (2009) CrossRefGoogle Scholar
  16. 16.
    F.Q. Kong, K. Zhao, Y. Zhan, T. Cao, M. Ni, L. Sui, M. Cai, Y. Zhuo, Chin. Sci. Bull. 50, 841 (2005) CrossRefGoogle Scholar
  17. 17.
    C. Leloup, G. Garty, G. Assaf, A. Cristovao, A. Breskin, R. Checkik, S. Shchemelinin, T. Paz-Elizur, Z. Livneh, R.W. Schulte, V. Bashkirov, J.R. Milligan, B. Grosswendt, Int. J. Radiat. Biol. 81, 41 (2005) CrossRefGoogle Scholar
  18. 18.
    J.F. Marko, E.D. Siggia, Phys. Rev. E 52, 2912 (1995) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    M.J. van Goethem, M. Niemantverdriet, P. van Luijk, R.C. Coppes, to be submitted Google Scholar
  20. 20.
    M.A. Siddiqi, E. Bothe, Radiat. Res. 112, 449 (1987) CrossRefGoogle Scholar
  21. 21.
    C. Shao, Z. Yu, M. Saito, Radiat. Environ. Biophys. 39, 121 (2000) CrossRefGoogle Scholar
  22. 22.
    J.D. Chapman, A.P. Reuvers, J. Borsa, C.L. Greenstock, Radiat. Res. 56, 291 (1973) CrossRefGoogle Scholar
  23. 23.
    R. Roots, S. Okada, Radiat. Res. 64, 306 (1975) CrossRefGoogle Scholar
  24. 24.
    T. Elsässer, S. Brons, K. Psonka, M. Scholz, E. Gudowska-Nowak, G. Taucher-Scholz, Radiat. Res. 169, 649 (2008) CrossRefGoogle Scholar
  25. 25.
    G. Laczko, V. Dangendorf, M. Krämer, D. Schardt, K. Tittelmeier, Nucl. Instrum. Meth. A 535, 216 (2004) ADSGoogle Scholar
  26. 26.
    R. Cowan, C.M. Collis, G.W. Grigg, J. Theor. Biol. 127, 229 (1987) CrossRefGoogle Scholar
  27. 27.
    J.A. Nelder, R. Mead, Comput. J. 7, 308 (1965) zbMATHGoogle Scholar
  28. 28.
    D. Marquardt, SIAM. J. Appl. Math. 11, 431 (1963) zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    G.L. Dianov, T.V. Timchenko, O.I. Sinitsina, A.V. Kuzminov, O.A. Medvedev, R.I. Salganik, Mol. Gen. Genet. 225, 448 (1991) CrossRefGoogle Scholar
  30. 30.
    R. Hanai, M. Yazu, K. Hieda, Int. J. Radiat. Biol. 73, 475 (1998) CrossRefGoogle Scholar
  31. 31.
    D.I. D’Souza, L. Harrison, Nucl. Acids Res. 31, 4573 (2003) CrossRefGoogle Scholar
  32. 32.
    A. Yokoya, N. Shikazono, K. Fujii, A. Urushibara, K. Akamatsu, R. Watanabe, Radiat. Phys. Chem. 77, 1280 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    J.A. LaVerne, Radiat. Res. 153, 487 (2000) CrossRefGoogle Scholar
  34. 34.
    K. Psonka, E. Gudowska-Nowak, S. Brons, T. Elsässer, M. Heiss, G. Taucher-Scholz, Adv. Space Res. 39, 1043 (2007) ADSCrossRefGoogle Scholar
  35. 35.
    W. Mondelaers, P. Lahorte, in Charged Particle and Photon Interactions with Matter Chemical, Physicochemical and Biological Consequences with Applications, edited by M. De Cuyper, J.W.M. Bulte (Kluwer Academic Publishers, the Netherlands, 2001), pp. 254–265 Google Scholar
  36. 36.
    V. Michalik, Radiat. Environ. Biophys. 32, 251 (1993) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • H. M. Dang
    • 1
    Email author
  • M. J. van Goethem
    • 1
  • E. R. van der Graaf
    • 1
  • S. Brandenburg
    • 1
  • R. Hoekstra
    • 1
  • T. Schlathölter
    • 1
    Email author
  1. 1.KVI, University of GroningenGroningenThe Netherlands

Personalised recommendations