The European Physical Journal D

, Volume 57, Issue 3, pp 335–342 | Cite as

DFT study of the fragmentation channels and electronic properties of Cu n ν (ν= ±1,0,2; n=3-13) clusters

  • G. Guzmán-RamírezEmail author
  • F. Aguilera-Granja
  • J. Robles
Clusters and Nanostructures


We report a theoretical study on small copper clusters Cu n ν (ν= ±1,0,2; n=3-13). We have published the optimized geometries in a previous paper, obtained with a gradient embedded genetic algorithm (GEGA) technique, and further density functional theory (DFT) geometry reoptimization of the best GEGA cluster structures for each size and charge. For the lower energy isomers of these clusters, we report in this paper the total all-electron energies and electronic properties such as the adiabatic ionization potentials, electron affinities, global hardnesses, and binding energies. Furthermore, we compute for each possible fragmentation channels of cationic copper clusters, the involved energetics, ΔE, and the extended-hardness change, Δη, based on the maximum hardness principle of Pearson and Chattaraj, Lee, and Parr, within the conceptual DFT formalism, but where η is computed with adiabatic rather than vertical energies. Both methods are shown to be in very good agreement with most available experimental findings. We argue that extended-hardness and the extended-hardness change are good DFT descriptors to assess the preferred fragmentation channels of charged copper clusters, where formation of the hardest fragments seems to be the driving force. Our theoretical results suggest that relaxation in these species is perhaps faster than usually assumed in the experiments performed to measure their fragmentation.


Cohesive Energy Collision Induce Dissociation Symmetry Point Group Density Functional Theory Study Neutral Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J.A. Alonso, Chem. Rev. 100, 637 (2000) Google Scholar
  2. V.A. Spasov, T.H. Lee, K.M. Ervin, J. Chem. Phys. 112, 1713 (2000) Google Scholar
  3. M.F. Jarrold, K.M. Greegan, Int. J. Mass Spectrom. Ion Proc. 102, 161 (1990) Google Scholar
  4. O. Ingólfsson, U. Busolt, K. Sugawara, J. Chem. Phys. 112, 4613 (2000) Google Scholar
  5. S. Krückeberg, L. Schweikhard, J. Ziegler, G. Dietrich, K. Lützenkirchen, C. Walther, J. Chem. Phys. 114, 2955 (2001) Google Scholar
  6. M. Vogel, A. Herlert, L. Schweikhard, J. Am. Soc. Mass Spectrom. 14, 614 (2003) Google Scholar
  7. G. Guzmán-Ramírez, F. Aguilera-Granja, J. Robles, Eur. Phys. J. D 57, 49 (2010) Google Scholar
  8. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, 1989) Google Scholar
  9. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983) Google Scholar
  10. R.G. Pearson, J. Chem. Edu. 64, 561 (1987) Google Scholar
  11. R.G. Pearson, Chemical Hardness (Wiley, 1997) Google Scholar
  12. P.K. Chattaraj, H. Lee, R.G. Parr, J. Am. Chem. Soc. 113, 1855 (1991) Google Scholar
  13. M.K. Harbola, Proc. Natl. Acad. Sci. USA 89, 1036 (1992) Google Scholar
  14. R.G. Parr, Z. Zhou, Acc. Chem. Res. 26, 256 (1993) Google Scholar
  15. R.G. Pearson, W.E. Palke, J. Phys. Chem. 96, 3283 (1992) Google Scholar
  16. A.N. Alexandrova, A.I. Boldyrev, J. Chem. Theory Comput. 1, 566 (2005) Google Scholar
  17. A.N. Alexandrova, A.I. Boldyrev, Y. Fu, X. Yang, X. Wang, L. Wang, J. Chem. Phys. 121, 5709 (2004) Google Scholar
  18. M.J. Frisch et al., Gaussian 98, Revision A.7 (Gaussian, Inc., Pittsburgh PA, 1998) Google Scholar
  19. M.J. Frisch et al., Gaussian 03, Revision D.02 (Gaussian, Inc., Wallingford CT, 2004) Google Scholar
  20. J.C. Slater, Quantum Theory of Molecular and Solids (McGraw-Hill, 1974), Vol. 4 Google Scholar
  21. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980) Google Scholar
  22. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985) Google Scholar
  23. A.D. Becke, Phys. Rev. A 38, 3098 (1988) Google Scholar
  24. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988) Google Scholar
  25. G. Guzmán-Ramírez, A. Segovia-Ríos, J. Sierra-Arellano, J. Robles, J. Comput. Meth. Sci. Eng. 7, 507 (2007) Google Scholar
  26. T. Koopman, Physica 1, 104 (1934) Google Scholar
  27. E.M. Fernández, J.M. Soler, I.L. Garzón, L.C. Balbás, Phys. Rev. B 70, 165403 (2004) Google Scholar
  28. K. Jug, B. Zimmermann, P. Calaminici, A.M. Köster, J. Chem. Phys. 116, 4497 (2002) Google Scholar
  29. A.M. James, G.W. Lemire, P.R.R. Langridge-Smith, Chem. Phys. Lett. 227, 503 (1994) Google Scholar
  30. M.B. Knickelbein, Chem. Phys. Lett. 192, 129 (1992) Google Scholar
  31. D.E. Powers, S.G. Hansen, M.E. Geusic, D.L. Michalopoulos, R.E. Smalley, J. Chem. Phys. 78, 2866 (1983) Google Scholar
  32. J. Ho, K.M. Ervin, W.C. Lineberger, J. Chem. Phys. 93, 6987 (1990) Google Scholar
  33. C.E. Moore, Atomic Energy Levels (Natl. Bureau of Standards, 1971), Vol. II Google Scholar
  34. C.L. Pettiette, S.H. Yang, M.J. Craycraft, J. Conceicao, R.T. Laaksonen, O. Cheshnovsky, R.E. Smalley, J. Chem. Phys. 88, 5377 (1988) Google Scholar
  35. C. Kittel, Introduction to Solid State Physics (Wiley, 2005) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • G. Guzmán-Ramírez
    • 1
    Email author
  • F. Aguilera-Granja
    • 2
  • J. Robles
    • 1
  1. 1.Posgrado en Química and Departmento de Farmacia, División de Ciencias Naturales y ExactasUniversidad of GuanajuatoGuanajuatoMéxico
  2. 2.Instituto de Física, Universidad Autónoma de San Luis PotosíSan Luis PotosíMéxico

Personalised recommendations