The European Physical Journal D

, Volume 57, Issue 2, pp 171–177

The 1S+1S asymptote of Sr2 studied by Fourier-transform spectroscopy

Highlight Paper

DOI: 10.1140/epjd/e2010-00058-y

Cite this article as:
Stein, A., Knöckel, H. & Tiemann, E. Eur. Phys. J. D (2010) 57: 171. doi:10.1140/epjd/e2010-00058-y


An experimental study of the long range behavior of the ground state X1Σ+g of Sr2 is performed by high resolution spectroscopy of asymptotic vibrational levels and the use of available photoassociation data. Ground state levels as high as v’’=60 (outer turning point at 23 Å and 0.1 cm-1 below the asymptote) could be observed by Fourier-transform spectroscopy of fluorescence progressions induced by single frequency laser excitation of the v’=4, J’=9 rovibrational level of the state 21Σ+u. A precise value of the scattering length for the isotopologue 88Sr2 is derived and transferred to all other isotopic combinations by mass scaling with the given potential. The derived potential together with already published information about the state 21Σ+u directs to promising optical paths for producing cold molecules in the electronic ground state from an ultracold ensemble of Sr atoms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material (390 kb)
ZIP file (390 KB)

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institut für Quantenoptik, Leibniz Universität HannoverHannoverGermany

Personalised recommendations