Advertisement

The European Physical Journal D

, Volume 57, Issue 2, pp 287–291 | Cite as

Asymmetric five-party quantum state sharing of an arbitrary m-qubit state

  • R. H. ShiEmail author
  • L. S. Huang
  • W. Yang
  • H. Zhong
Quantum Information

Abstract

We present an asymmetric scheme for five-party quantum state sharing of an arbitrary m-qubit state with the maximally entangled states of two-particle and three-particle. It involves two-particle Bell-basis or three-particle GHZ-basis measurements, rather than five-particle entanglements and five-particle joint measurements, which makes it more convenient in a practical application than some previous schemes. In addition, except that the designated recover of the quantum secret just keeps m particles, other agents only hold one particle in their hands respectively, and thus they only need perform a single-particle measurement on the respective particle with the basis X. Its intrinsic efficiency for qubits approaches 100%, and the total efficiency really approaches the maximal value.

Keywords

Quantum Channel Local Unitary Operation Quantum State Sharing Quantum Secret Sharing Scheme QSTS Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.R. Blakley, in Proceedings of the American Federation of Information Processing 1979 National Computer Conference (American Federation of Information Processing, Arlington, VA, 1979), p. 313 Google Scholar
  2. A. Shamir, Commun. ACM 22, 612 (1979) Google Scholar
  3. M. Hillery, V. Buzek, A. Berthiaume, Phys. Rev. A 59, 1829 (1999) Google Scholar
  4. R. Cleve, D. Gottesman, H.K. Lo, Phys. Rev. Lett. 83, 648 (1999) Google Scholar
  5. D. Gottesman, Phys. Rev. A 61, 042311 (2000) Google Scholar
  6. I. Hideki et al., arXiv:quant-ph/0311136v1 (2003) Google Scholar
  7. K.S. Sudhir, R. Srikanth, Phys. Rev. A 71, 012328 (2005) Google Scholar
  8. S.J. Qin, F. Gao, Q.Y. Wen, F.C. Zhu, Phys. Rev. A 76, 062324 (2007) Google Scholar
  9. W. Tittel, H. Zbinden, N. Gisin, Phys. Rev. A 63, 042301 (2001) Google Scholar
  10. A.M. Lance, T. Symul, W.P. Bowen, B.C. Sanders, P.K. Lam, Phys. Rev. Lett. 92, 177903 (2004) Google Scholar
  11. R. Cleve et al., Phys. Rev. Lett. 83, 648 (1999) Google Scholar
  12. S. Bandyopadhyay, Phys. Rev. A 62, 012308 (2000) Google Scholar
  13. L.Y. Hsu, Phys. Rev. A 68, 022306 (2003) Google Scholar
  14. Y.M. Li, K.S. Zhang, K.C. Peng, Phys. Lett. A 324 (2004) Google Scholar
  15. F.G. Deng et al., Phys. Rev. A 72, 022338 (2005) Google Scholar
  16. F.G. Deng et al., Phys. Rev. A 72, 044301 (2005) Google Scholar
  17. X.H. Li et al., J. Phys. B: At. Mol. Opt. Phys. 39, 1975 (2006) Google Scholar
  18. F.G. Deng et al., Eur. Phys. J. D 39, 459 (2006) Google Scholar
  19. Z.X. Man, Y.J. Xia, N.B. An, Eur. Phys. J. D 42, 333 (2007) Google Scholar
  20. J. Liu, Y.M. Liu, Z.J. Zhang, Int. J. Theor. Phys. 47, 2353 (2008) Google Scholar
  21. H. Yuan, Y.M. Liu, L.F. Han, Z.J. Zhang, Commun. Theor. Phys. 49, 1191 (2008) Google Scholar
  22. T.J. Wang, H.Y. Zhou, F.G. Deng, Physica A 387, 4716 (2008) Google Scholar
  23. Y.B. Sheng, F.G. Deng, H.Y. Zhou, Eur. Phys. J. D 48, 279 (2008) Google Scholar
  24. A. Cabello, Phys. Rev. Lett. 85, 5635 (2000) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.NHPCC, Depart. of CS. & Tech., USTCHefeiP.R. China
  2. 2.School of Computer Science and Technology, Anhui UniversityHefeiP.R. China
  3. 3.Suzhou Institute for Advanced Study, USTCSuzhouP.R. China

Personalised recommendations