Advertisement

The European Physical Journal D

, Volume 57, Issue 2, pp 235–240 | Cite as

Stability of a fully polarized ultracold Fermi gas near zero-crossing of a p-wave Feshbach resonance

  • N. T. ZinnerEmail author
Cold Matter and Quantum Gases

Abstract

We consider a fully polarized ultracold Fermi gas interacting through a p-wave Feshbach resonance. Using a two-channel model, we find the effective potential at the point where the p-wave scattering length goes to zero. Here the effective interaction provides attraction and one can therefore ask about the stability of the system. We calculate the energy density of the system in the Thomas-Fermi approximation, determine the profile of the gas, and the critical number of particle in the system as function of the relevant interaction parameters. The instability can be inferred from a simple breathing mode argument which explains the scaling found numerically. The critical particle number turns out to be extremely large unless the external confinement is very tight. We therefore conclude that the effect is insignificant for standard trapping potentials and that the magnetic dipole interaction is the important term at zero scattering length. However, for tight confinement as in an optical lattice higher-order corrections can become important.

Keywords

Critical Number Feshbach Resonance Harmonic Trap Trap Length Critical Chemical Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008) Google Scholar
  2. S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008) Google Scholar
  3. C.A. Regal, C. Ticknor, J.L. Bohn, D.S. Jin, Phys. Rev. Lett. 90, 053201 (2003) Google Scholar
  4. C. Ticknor, C.A. Regal, D.S. Jin, J.L. Bohn, Phys. Rev. A 69, 042712 (2004) Google Scholar
  5. K. Günter, T. Stöferle, H. Moritz, M. Köhl, T. Esslinger, Phys. Rev. Lett. 95, 230401 (2005) Google Scholar
  6. J.P. Gaebler, J.T. Stewart, J.L. Bohn, D.S. Jin, Phys. Rev. Lett. 98, 200403 (2007) Google Scholar
  7. J. Zhang et al., Phys. Rev. A 70, 030702(R) (2004) Google Scholar
  8. C.H. Schunck et al., Phys. Rev. A 71, 045601 (2005) Google Scholar
  9. F. Chevy et al., Phys. Rev. A 71, 062710 (2005) Google Scholar
  10. K.B. Gubbels, H.T.C. Stoof, Phys. Rev. Lett. 99, 190406 (2007) Google Scholar
  11. J. Fuchs et al., Phys. Rev. A 77, 053616 (2008) Google Scholar
  12. Y. Inada et al., Phys. Rev. Lett. 101, 100401 (2008) Google Scholar
  13. T.L. Ho, R.B. Diener, Phys. Rev. Lett. 94, 090402 (2005) Google Scholar
  14. V. Gurarie, L. Radzihovsky, Phys. Rev. Lett. 94, 230403 (2005) Google Scholar
  15. V. Gurarie, L. Radzihovsky, Ann. Phys. (N.Y.) 322, 2 (2007) Google Scholar
  16. C.H. Cheng, S.-K. Yip, Phys. Rev. Lett. 95, 070404 (2005) Google Scholar
  17. C.H. Cheng, S.-K. Yip, Phys. Rev. B 73, 090402 (2006) Google Scholar
  18. M. Iskin, C.A.R. Sa de Melo, Phys. Rev. Lett. 96, 040402 (2006) Google Scholar
  19. L. Pricoupenko, Phys. Rev. Lett. 96, 050401 (2006) Google Scholar
  20. D. Jaksch, V. Venturi, J.I. Cirac, C.J. Williams, P. Zoller, Phys. Rev. Lett. 89, 040402 (2002) Google Scholar
  21. G. Roati et al., Phys. Rev. Lett. 99, 010403 (2007) Google Scholar
  22. C. D’Errico et al., New J. Phys. 9, 223 (2007) Google Scholar
  23. M. Fattori et al., Phys. Rev. Lett. 100, 080405 (2008) Google Scholar
  24. M. Fattori et al., Phys. Rev. Lett. 101, 190405 (2008) Google Scholar
  25. M. Gustavsson et al., Phys. Rev. Lett. 100, 080404 (2008) Google Scholar
  26. S.E. Pollack et al., Phys. Rev. Lett. 102, 090402 (2009) Google Scholar
  27. N.T. Zinner, M. Thøgersen, Phys. Rev. A 80, 023607 (2009) Google Scholar
  28. M. Thøgersen, N.T. Zinner, A.S. Jensen, Phys. Rev. A 80, 043625 (2009) Google Scholar
  29. N.T. Zinner, e-print arXiv:0909.1314v1 Google Scholar
  30. M.W. Zwierlein, A. Schirotzek, C.H. Schunck, W. Ketterle, Science 311, 492 (2006) Google Scholar
  31. M.W. Zwierlein, C.H. Schunck, A. Schirotzek, W. Ketterle, Nature 442, 54 (2006) Google Scholar
  32. Y. Shin, M.W. Zwierlein, C.H. Schunck, A. Schirotzek, W. Ketterle, Phys. Rev. Lett. 97, 030401 (2006) Google Scholar
  33. C.H. Schunck, Y. Shin, A. Schirotzek, M.W. Zwierlein, W. Ketterle, Science 316, 867 (2007) Google Scholar
  34. G.B. Partridge, W. Li, R.I. Kamar, Y. Liao, R.G. Hulet, Science 311, 503 (2006) Google Scholar
  35. G.B. Partridge, W. Li, Y.A. Liao, R.G. Hulet, M. Haque, H.T.C. Stoof, Phys. Rev. Lett. 97, 190407 (2006) Google Scholar
  36. S.-K. Yip, Phys. Rev. A 78, 013612 (2008) Google Scholar
  37. M. Jona-Lasinio, L. Pricoupenko, Y. Castin, Phys. Rev. A 77, 043611 (2008) Google Scholar
  38. Z. Idziaszek, Phys. Rev. A 79, 062701 (2009) Google Scholar
  39. F.H. Mies, P.S. Julienne, J. Chem. Phys. 80, 2526 (1984) Google Scholar
  40. P.S. Julienne, B. Gao, AIP Conf. Proc. (AIP, New York, 2006), pp. 261-268 Google Scholar
  41. R. Roth, H. Feldmeier, Phys. Rev. A 64, 043603 (2001) Google Scholar
  42. H. Suno, B.D. Esry, C.H. Greene, Phys. Rev. Lett. 93, 143201 (2003) Google Scholar
  43. J. Levinsen, N.R. Copper, V. Gurarie, Phys. Rev. A 78, 063616 (2008) Google Scholar
  44. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, 2002) Google Scholar
  45. D.R. Phillips, S.R. Beane, T.D. Cohen, Ann. Phys. 263, 255 (1998) Google Scholar
  46. L. Vichi, S. Stringari, Phys. Rev. A 60, 4734 (1999) Google Scholar
  47. D.A. Butts, D.S. Rokhsar, Phys. Rev. A 55, 4346 (1997) Google Scholar
  48. M. Iskin, C.A.R. Sa de Melo, Phys. Rev. B 72, 224513 (2005) Google Scholar
  49. Y.-J. Han et al., Phys. Rev. Lett. 103, 070404 (2009) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations