Advertisement

The European Physical Journal D

, Volume 58, Issue 2, pp 167–174 | Cite as

Nonlinear dynamics of doped semiconductor quantum dot lasers

  • K. LüdgeEmail author
  • E. Schöll
Focus point issue on Laser dynamics and nonlinear photonics

Abstract

We discuss the influence of wetting layer doping on the turn-on dynamics of a quantum dot (QD) laser by using a microscopically based rate equation model which separately treats the dynamics of electrons and holes. As the carrier-carrier scattering rates depend nonlinearly on the wetting layer carrier densities we observe drastic changes of relaxation oscillation frequency and damping if the wetting layer is doped. We gain insight into the nonlinear dynamics of the QD laser by a detailed analysis of various sections of the five-dimensional phase space focusing on changes in the coupling between QD electron and holes dynamics.

Keywords

Relaxation Oscillation Wetting Layer Rate Equation Model Steady State Characteristic Hole Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons Ltd., New York, 1999) Google Scholar
  2. W.W. Chow, S.W. Koch, Semiconductor-Laser Fundamentals (Springer, Berlin, 2004) Google Scholar
  3. J. Kim, S.L. Chuang, IEEE J. Quantum Electron. 42, 942 (2006) Google Scholar
  4. E. Malić, K.J. Ahn, M.J.P. Bormann, P. Hövel, E. Schöll, A. Knorr, M. Kuntz, D. Bimberg, Appl. Phys. Lett. 89, 101107 (2006) Google Scholar
  5. E. Malić, M.J.P. Bormann, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, E. Schöll, IEEE J. Sel. Top. Quantum Electron. 13, 1242 (2007) Google Scholar
  6. K. Lüdge, M.J.P. Bormann, E. Malić, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, E. Schöll, Phys. Rev. B 78, 035316 (2008) Google Scholar
  7. K. Lüdge, E. Schöll, IEEE J. Quantum Electron. 45, 1396 (2009) Google Scholar
  8. T.R. Nielsen, P. Gartner, F. Jahnke, Phys. Rev. B 69, 235314 (2004) Google Scholar
  9. C. Otto, K. Lüdge, E. Schöll, Phys. Stat. Sol. B 247, 829 (2010) Google Scholar
  10. D.G. Deppe, H. Huang, IEEE J. Quantum Electron. 42, 324 (2006) Google Scholar
  11. K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, S. Loualiche, IEEE J. Quantum Electron. 43, 810 (2007) Google Scholar
  12. M. Gioannini, I. Montrosset, IEEE J. Quantum Electron. 43, 941 (2007) Google Scholar
  13. T. Erneux, E.A. Viktorov, P. Mandel, Phys. Rev. A 76, 023819 (2007) Google Scholar
  14. A. Fiore, A. Markus, IEEE J. Quantum Electron. 43, 287 (2007) Google Scholar
  15. A.E. Viktorov, P. Mandel, A.G. Vladimirov, U. Bandelow, Appl. Phys. Lett. 88, 201102 (2006) Google Scholar
  16. M. Lorke, F. Jahnke, W.W. Chow, Appl. Phys. Lett. 90, 051112 (2007) Google Scholar
  17. H.C. Schneider, W.W. Chow, S.W. Koch, Phys. Rev. B 70, 235308 (2004) Google Scholar
  18. W.W. Chow, S.W. Koch, IEEE J. Quantum Electron. 41, 495 (2005) Google Scholar
  19. J. Gomis-Bresco, S. Dommers, V.V. Temnov, U. Woggon, M. Lämmlin, D. Bimberg, E. Malić, M. Richter, E. Schöll, A. Knorr, Phys. Rev. Lett. 101, 256803 (2008) Google Scholar
  20. D. O'Brien, S.P. Hegarty, G. Huyet, A.V. Uskov, Opt. Lett. 29, 1072 (2004) Google Scholar
  21. H. Dery, G. Eisenstein, IEEE J. Quantum. Electron. 41, 26 (2005) Google Scholar
  22. E. Gehrig, O. Hess, Phys. Rev. A 65, 033804 (2002) Google Scholar
  23. C. Xing, E.A. Avrutin, J. Appl. Phys. 97, 104301 (2005) Google Scholar
  24. G. Lasher, F. Stern, Phys. Rev. 133, A553 (1964) Google Scholar
  25. J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, G. Eisenstein, IEEE J. Quantum Electron. 45, 240 (2009) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institut für Theoretische Physik, Technische Universität BerlinBerlinGermany

Personalised recommendations