Advertisement

The European Physical Journal D

, Volume 57, Issue 2, pp 293–300 | Cite as

High-fidelity copies from a symmetric 1→2 quantum cloning machine

  • M. SiomauEmail author
  • S. Fritzsche
Quantum Information

Abstract

A symmetric 1→2 quantum cloning machine (QCM) is presented that provides high-fidelity copies with 0.90≤ F≤0.95 for all pure (single-qubit) input states from a given meridian of the Bloch sphere. Emphasize is placed especially on the states of the (so-called) Eastern meridian, that includes the computational basis states |0〉,|1〉 together with the diagonal state \(|{+}\rangle \,=\, \frac{1}{\sqrt{2}} (|{0}\rangle \,+\, |{1}\rangle)\), for which suggested cloning transformation is shown to be optimal. In addition, we also show how this QCM can be utilized for eavesdropping in Bennett’s B92 protocol for quantum key distribution with a substantial higher success rate than obtained for universal or equatorial quantum copying.

Keywords

Mutual Information Input State Quantum Cryptography Bloch Sphere Quantum Cloning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.K. Wootters, W.H. Zurek, Nature 299, 802 (1982) Google Scholar
  2. M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2000) Google Scholar
  3. S.Ya. Kilin, D.B. Choroshko, A.P. Nizovtsev, Quantum Cryptography (Belorus Science, Minsk, 2007) Google Scholar
  4. V. Scarani, S. Iblisbir, N. Gisin, Rev. Mod. Phys. 77, 1225 (2005) Google Scholar
  5. V. Bužek, M. Hillery, Phys. Rev. A 54, 1844 (1996) Google Scholar
  6. N.J. Cerf, Acta. Phys. Slov. 48, 115 (1998) Google Scholar
  7. D. Bruß, M. Cinchetti, G.M. D`Ariano, C. Macchiavell, Phys. Rev. A 62, 012302 (2000) Google Scholar
  8. H. Bechmann-Pasquinucci, N. Gisin, Phys. Rev. A 59, 4238 (1999) Google Scholar
  9. D. Bruß, Phys. Rev. Lett. 81, 3018 (1998) Google Scholar
  10. C.H. Bennett, G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Proceeding, Bangalore, India (IEEE, New York, 1985), p. 175. Google Scholar
  11. C.H. Bennett, Phys. Rev. Lett. 68, 3121 (1992) Google Scholar
  12. A. Peres, Phys. Rev. A 61, 022116 (2000) Google Scholar
  13. K. Audenaert, B. De Moor, Phys. Rev. A 65, R030302 (2002) Google Scholar
  14. J. Fiurášek, Phys. Rev. A 67, 052314 (2003) Google Scholar
  15. A.K. Ekert, B. Huttner, G.M. Palma, A. Peres, Phys. Rev. A 50, 1047 (1994) Google Scholar
  16. C.A. Fuchs, A. Peres, Phys. Rev. A 53, 2038 (1996) Google Scholar
  17. A. Peres, Quantum Theory: Concepts and Methods (Kluwer Acad. Publ., 2002) Google Scholar
  18. M. Hillery, V. Bužek, Phys. Rev. A 56, 1212 (1997) Google Scholar
  19. D. Bruß, D.P. DiVincenzo, A. Ekert, C.A. Fuchs, C. Macchiavello, J.A. Smolin, Phys. Rev. A 57, 2368 (1998) Google Scholar
  20. M. Siomau, S. Fritzsche, in Proceeding of QuantCom 2009, edited by A. Sergienko (LNICST 36, 2010), p. 267 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.Physikalisches Institut, Heidelberg UniversitätHeidelbergGermany
  3. 3.Department of Physical SciencesUniversity of OuluOuluFinland
  4. 4.Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany

Personalised recommendations