Advertisement

The European Physical Journal D

, Volume 60, Issue 1, pp 171–176 | Cite as

Modeling radiation effects at the tissue level

  • M. Müller
  • M. DuranteEmail author
  • H. Stöcker
  • F. Merz
  • I. Bechmann
Topical issue on Molecular level assessments of radiation biodamage

Abstract

For the understanding of radiation action in humans, a synergistic approach of experiments and quantitative modeling of working hypotheses is necessary. A large set of experimental data at the single-cell level are available, and biophysical modeling of radiation action has so far mostly concentrated on the first phases of radiation interaction with the biomolecules, and later biochemical stages including DNA breakage, repair, and the formation of chromosomal aberrations. The models can be extended to cell killing and transformation, but so far still using a single-cell (clonal expansion) approach. On the contrary, new experimental evidence points to the microenvironment and the tissue level as a critical radiation target for late effects, and to epigenetic and signaling mechanisms as mediators of radiation damage. This higher structural level is generally ignored in modeling, owing to its complexity and to the lack of experimental data. In this paper we will highlight the requirements for specific experimental approaches targeting the tissue/microenvironment level and the most promising available experimental models.

Keywords

Radiation Action Slice Culture Chemical Stage Organotypic Brain Slice NASA Johnson Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.J. Muller, Proc. Natl. Acad. Sci. USA 14, 714 (1928) CrossRefADSGoogle Scholar
  2. 2.
    W. Friedland et al., Radiat. Environ. Biophys. 47, 49 (2008) CrossRefGoogle Scholar
  3. 3.
    J.H. Hoeijmakers, N. Engl. J. Med. 361, 1475 (2009) CrossRefGoogle Scholar
  4. 4.
    H. Nikjoo et al., Radiat. Prot. Dosim. 99, 77 (2002) Google Scholar
  5. 5.
    H.L. Wu, M. Durante, J.N. Lucas, Int. J. Radiat. Biol. 77, 781 (2001) CrossRefGoogle Scholar
  6. 6.
    T. Elsässer, M. Krämer, M. Scholz, Int. J. Radiat. Oncol. Biol. Phys. 71, 866 (2008) Google Scholar
  7. 7.
    A.V. Solov’yov et al., Phys. Rev. E 79, 011909 (2009) CrossRefADSGoogle Scholar
  8. 8.
    M.H. Barcellos-Hoff, C. Park, E.G. Wright, Nat. Rev. Cancer 5, 867 (2005) CrossRefGoogle Scholar
  9. 9.
    L. Huang, P.M. Kim, J.A. Nickoloff, W.F. Morgan, Cancer Res. 67, 1099 (2007) CrossRefGoogle Scholar
  10. 10.
    C. Mothersill, C.B. Seymour, Nat. Rev. Cancer 4, 158 (2004) Google Scholar
  11. 11.
    C. Shao, M. Folkard, B.D. Michael, K.M. Prise, Proc. Natl. Acad. Sci. USA 101, 13495 (2004) CrossRefADSGoogle Scholar
  12. 12.
    O.V. Belyakov et al., Proc. Natl. Acad. Sci. USA 102, 14203 (2005) CrossRefADSGoogle Scholar
  13. 13.
    M. Mancuso et al., Proc. Natl. Acad. Sci. USA 105, 12445 (2008) CrossRefADSGoogle Scholar
  14. 14.
    K.M. Prise, J.M. O’Sullivan, Nat. Rev. Cancer 9, 351 (2009) CrossRefGoogle Scholar
  15. 15.
    F.A. Cucinotta, M. Durante, Lancet Oncol. 7, 431 (2006) CrossRefGoogle Scholar
  16. 16.
    J.R. Kaminski et al., Cancer Treat. Rev. 31, 159 (2005) CrossRefGoogle Scholar
  17. 17.
    B. Bierie, H.L. Moses, Nat. Rev. Cancer 6, 506 (2006) CrossRefGoogle Scholar
  18. 18.
    J. Massagué, Cell 134, 215 (2008) CrossRefGoogle Scholar
  19. 19.
    J. Wang et al., Am. J. Pathol. 153, 1531 (1998) Google Scholar
  20. 20.
    N.P. Hailer, J.D. Jarhult, R. Nitsch, Glia 18, 319 (1996) CrossRefGoogle Scholar
  21. 21.
    F. Merz et al., submitted Google Scholar
  22. 22.
    H. Fakir et al., Radiat. Res. 171, 320 (2009) CrossRefGoogle Scholar
  23. 23.
    M. Durante, F.A. Cucinotta, Nat. Rev. Cancer 8, 465 (2008) CrossRefGoogle Scholar
  24. 24.
    M. Durante, J.S. Loeffler, Nat. Rev. Clin. Oncol. 7, 35 (2010) CrossRefGoogle Scholar
  25. 25.
    M.M. Weil et al., Radiat. Res. 172, 213 (2009) CrossRefGoogle Scholar
  26. 26.
    L. Sabatier, B. Dutrillaux, M.B. Martin, Nature 357, 548 (1992) CrossRefADSGoogle Scholar
  27. 27.
    R. Rola et al., Radiat. Res. 169, 626 (2009) CrossRefGoogle Scholar
  28. 28.
    H. Fakir et al., Radiat. Res. 172, 383 (2009) CrossRefGoogle Scholar
  29. 29.
    H. Byrne, D. Drasdo, J. Math. Biol. 58, 657 (2009) CrossRefMathSciNetGoogle Scholar
  30. 30.
    A. Neagu et al., Phys. Rev. Lett. 95, 178104 (2005) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • M. Müller
    • 1
    • 2
  • M. Durante
    • 1
    • 3
    Email author
  • H. Stöcker
    • 1
    • 2
  • F. Merz
    • 4
  • I. Bechmann
    • 4
  1. 1.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  2. 2.Frankfurt Institute for Advanced Studies (FIAS)Frankfurt am MainGermany
  3. 3.Technical University of DarmstadtDarmstadtGermany
  4. 4.Institute of Anatomy, University of LeipzigLeipzigGermany

Personalised recommendations