Advertisement

The European Physical Journal D

, Volume 57, Issue 2, pp 151–154 | Cite as

Modulation-free pump-probe spectroscopy of strontium atoms

  • C. Javaux
  • I.G Hughes
  • G. Lochead
  • J. Millen
  • M. P.A. Jones
Atomic Physics

Abstract

We have performed polarization spectroscopy on the 5s2 1S0 →5s5p1P1 transition of atomic strontium. The signal is generated by saturation effects, rather than optical pumping, as the ground state is non-degenerate. This technique generated a dispersion-type lineshape suitable for laser stabilization, without the need for frequency modulation. The dependence of the amplitude and gradient on intensity and magnetic field were also investigated, and compared to a related technique based on the circular dichroism induced by a magnetic field.

Keywords

Probe Beam Pump Beam Polarize Beam Splitter Magnetic Sublevel Polarization Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.C. Bjorklund, Opt. Lett. 5, 15 (1980) Google Scholar
  2. J.H. Shirley, Opt. Lett. 7, 537 (1982) Google Scholar
  3. D.J. McCarron, S.A. King, S.L. Cornish, Meas. Sci. Technol. 19, 105601 (2008) Google Scholar
  4. C. Wieman, T.W. Hänsch, Phys. Rev. Lett. 36, 1170 (1976) Google Scholar
  5. W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer-Verlag, 1996), pp. 454–465 Google Scholar
  6. C.P. Pearman, C.S. Adams, S.G. Cox, P.F. Griffin, D.A. Smith, I.G. Hughes, J. Phys. B: At. Mol. Opt. Phys. 35, 5141 (2002) Google Scholar
  7. M.L. Harris, C.S. Adams, S.L. Cornish, I.C. McLeod, E. Tarleton, I.G. Hughes, Phys. Rev. A 73, 062509 (2006) Google Scholar
  8. T. Akatsuka, M. Takamoto, H. Katori, Nature Phys. 4, 954 (2008) Google Scholar
  9. N. Poli et al., Phys. Rev. A 77, R050501 (2008) Google Scholar
  10. C.E. Simien, Y.C. Chen, P. Gupta, S. Laha, Y.N. Martinez, P.G. Mickelson, D.B. Nagel, T.C. Killian, Phys. Rev. Lett. 92, 143001 (2004) Google Scholar
  11. D. Hansen, A. Hemmerich, Phys. Rev. A 72, 022502 (2005) Google Scholar
  12. G.M. Tino, M. Barsanti, M. de Angelis, L. Gianfrani, M. Inguscio, Appl. Phys. B 55, 397 (1992) Google Scholar
  13. G. Wasik, W. Gawlik, J. Zachorowski, W. Zawadzki, Appl. Phys. B 75, 613 (2002) Google Scholar
  14. M.L. Harris, S.L. Cornish, A. Tripathi, I.G. Hughes, J. Phys. B: At. Mol. Opt. Phys. 41, 085401 (2008) Google Scholar
  15. E.M. Bridge, J. Millen, C.S. Adams, M.P.A Jones, Rev. Sci. Instrum. 80, 013101 (2009) Google Scholar
  16. S. Mauger, J. Millen, M.P.A Jones, J. Phys. B: At. Mol. Opt. Phys. 40, F319 (2007) Google Scholar
  17. H. Do, G. Moon, H.-R. Noh, Phys. Rev. A 77, 032513 (2008) Google Scholar
  18. B. Chéron, H. Gilles, J. Hamel, O. Moreau, H. Sorel, J. Phys. III 4, 401 (1994) Google Scholar
  19. K.L. Corwin, Z.-T. Lu, C.F. Hand, R.J. Epstein, C.E. Wieman, Appl. Opt. 37, 3295 (1998) Google Scholar
  20. D.A. Smith, I.G. Hughes, Am J. Phys. 72, 631 (2004) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • C. Javaux
    • 1
  • I.G Hughes
    • 1
  • G. Lochead
    • 1
  • J. Millen
    • 1
  • M. P.A. Jones
    • 1
  1. 1.Department of PhysicsDurham UniversityDurhamUK

Personalised recommendations