Advertisement

The European Physical Journal D

, Volume 57, Issue 2, pp 187–196 | Cite as

Efficient solution of scattering equations by combination of R-matrix and Lanczos methods

  • M. ŠulcEmail author
  • R. Čurík
  • J. Horáček
Atomic and Molecular Collisions
  • 84 Downloads

Abstract

We propose a fast and economical computational method for solving scattering Lippmann-Schwinger integral equation. Our approach benefits from the accurate construction of the Green’s function based on the R-matrix theory combined with the Schwinger-Lanczos variational principle. No principal restrictions on the form of the potential are assumed. Theoretical description of our method in the first part of this paper is then followed by numerical examples. In particular we demonstrate how to adapt our method for computation of partial wave phase-shifts in the case of electron-hydrogen atom scattering. Then we also investigate the properties of a family of long-range potentials (emerging e.g. in the theoretical description of the Cs2 or 4He2 dimer ground state interaction). As demonstrated on these particular cases, our approach turns out to be very accurate in comparison with other computational methods.

Keywords

Mesh Point Lanczos Method Nonlocal Part Ground State Interaction Local Potential Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Field, S. Lunt, J.P. Ziesel, Acc. Chem. Res. 34, 291 (2001) Google Scholar
  2. J. Weiner, Rev. Mod. Phys. 71, 1 (1999) Google Scholar
  3. N. Lane, Rev. Mod. Phys. 52, 29 (1980) Google Scholar
  4. M. Gell-Mann, M. Goldberger, Phys. Rev. 91, 398 (1953) Google Scholar
  5. J. Taylor, Scattering theory: The quantum theory on nonrelativistic collisions (John Wiley & Sons, Inc., 1972) Google Scholar
  6. N. Mott, H. Massey, The theory of atomic collisions (Oxford Univeristy Press, 1965) Google Scholar
  7. P. Roman, Advanced quantum theory (Addison-Wesley Publishing Company Inc, 1965) Google Scholar
  8. T. O’Malley, L. Spruch, L. Rosenberg, J. Math. Phys. 2, 491 (1961) Google Scholar
  9. M.L. Goldberger, K.M. Watson, Collision theory (John Wiley & Sons, Inc., 1967) Google Scholar
  10. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Butterworth-Heinemann, 1981) Google Scholar
  11. R. Berger, H. Snodgrass, L. Spruch, Phys. Rev. 185, 113 (1969) Google Scholar
  12. O. Hinckelmann, L. Spruch, Phys. Rev. A 3, 642 (1971) Google Scholar
  13. P. Ganas, Phys. Rev. A 5, 1684 (1972) Google Scholar
  14. B. Gao, Phys. Rev. A 58, 1728 (1998) Google Scholar
  15. G.V. Mil’nikov, H. Nakamura, J. Horáček, Comput. Phys. Commun. 135, 278 (2001) Google Scholar
  16. C. Bloch, Nucl. Phys. 4, 503 (1957) Google Scholar
  17. B. Lippmann, J. Schwinger, Phys. Rev. 79, 469 (1950) Google Scholar
  18. H.D. Meyer, J. Horáček, L. Cederbaum, Phys. Rev. A 43, 3587 (1991) Google Scholar
  19. G.H. Rawitscher, S.Y. Kang, I. Koltracht, J. Chem. Phys. 118, 9149 (2003) Google Scholar
  20. L. Greengard, SIAM J. Numer. Anal. 28, 1071 (1991) Google Scholar
  21. L. Greengard, V. Rokhlin, Commun. Pure Appl. Math. 44, 419 (1991) Google Scholar
  22. R. Gonzales, J. Eisert, I. Koltracht, M. Neumann, G. Rawitscher, J. Comput. Phys. 134, 134 (1997) Google Scholar
  23. B. Kim, T. Udagawa, Phys. Rev. C 42, 1147 (1990) Google Scholar
  24. F. Perey, B. Buck, Nucl. Phys. 32, 353 (1962) Google Scholar
  25. W. Sams, D. Kouri, J. Chem. Phys. 51, 4809 (1969) Google Scholar
  26. J. Horáček, T. Sasakawa, Phys. Rev. A 28, 2151 (1983) Google Scholar
  27. J. Horáček, T. Sasakawa, Phys. Rev. A 30, 2274 (1984) Google Scholar
  28. J. Horáček, T. Sasakawa, Phys. Rev. C 32, 70 (1985) Google Scholar
  29. J. Horáček, J. Bok, Comput. Phys. Commun. 59, 319 (1990) Google Scholar
  30. G. Gribakin, V. Flambaum, Phys. Rev. A 48, 546 (1993) Google Scholar
  31. M. Krauss, W. Stevens, J. Chem. Phys. 93, 4236 (1990) Google Scholar
  32. V. Bargmann, Proc. Acad. Sci. USA 38, 961 (1952) Google Scholar
  33. J. Schwinger, Proc. Acad. Sci. USA 47, 122 (1961) Google Scholar
  34. M. Marinescu, Phys. Rev. A 50, 3177 (1994) Google Scholar
  35. T. Sasakawa, J. Horáček, J. Phys. B 15, L169 (1982) Google Scholar
  36. E. Nowak, L. Rosenberg, L. Spruch, J. Phys. B 13, L599 (1980) Google Scholar
  37. R. Aziz, V. Nain, J. Carley, W. Taylor, G. McConville, J. Chem. Phys. 70, 4330 (1979) Google Scholar
  38. R. Aziz, F. McCourt, C. Wong, Molec. Phys. 61, 1487 (1987) Google Scholar
  39. R. Aziz, M. Slaman, J. Chem. Phys. 94, 8047 (1991) Google Scholar
  40. A. Motovilov, W. Sandhas, S. Sofianos, E. Kolganova, Eur. Phys. J. D 13, 33 (2001) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsPrague 8Czech Republic
  2. 2.J. Heyrovský Institute of Physical Chemistry of the ASCRPrague 8Czech Republic

Personalised recommendations