Advertisement

The European Physical Journal D

, Volume 60, Issue 1, pp 65–69 | Cite as

On the behavior of an analytical form of the stopping cross-section or how sharp can a Bragg peak be made?

  • J. R. SabinEmail author
  • J. Oddershede
Topical issue on Molecular level assessments of radiation biodamage
  • 79 Downloads

Abstract

An analysis is made of the Bragg peak in the stopping power of fast ions, with the intension of determining how to shape the dose-depth curve for fast ions impinging on materials. We find the use of highly charged projectiles is very effective for narrowing the peak.

Keywords

Excitation Energy Energy Deposition Bragg Peak Atomic Unit Shell Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Th. Haberer et al., Nucl. Instrum. Meth. A 330, 296 (1993) CrossRefADSGoogle Scholar
  2. 2.
    Th. Haberer et al., Radiotherapy and Oncology 73, 186 (2004) CrossRefGoogle Scholar
  3. 3.
    A. Gemmel, B. Hasch, M. Ellerbrock, W.K. Weyrather, M. Krämer, Phys. Med. Biol. 53, 6991 (2008) CrossRefGoogle Scholar
  4. 4.
    H. Bethe, Ann. Phys. 5, 325 (1930) CrossRefGoogle Scholar
  5. 5.
    M.S. Livingston, H.A. Bethe, Rev. Mod. Phys. 9, 263 (1937) CrossRefADSGoogle Scholar
  6. 6.
    W.H. Barkas, J.N. Dyer, H.H. Heckman, Phys. Rev. Lett. 11, 26 (1963) CrossRefADSGoogle Scholar
  7. 7.
    F. Bloch, Ann. Phys. 16, 285 (1933) zbMATHCrossRefGoogle Scholar
  8. 8.
    J.R. Sabin, J. Oddershede, Int. J. Quant. Chem. 109, 2933 (2009) CrossRefGoogle Scholar
  9. 9.
    J. Lindhard, Nucl. Instrum. Meth. 132, 1 (1976) CrossRefADSGoogle Scholar
  10. 10.
    J. Oddershede, J.R. Sabin, At. Data Nucl. Data Tables 31, 275 (1984) CrossRefADSGoogle Scholar
  11. 11.
    H.H. Andersen, J.F. Ziegler, Hydrogen stopping powers and ranges in all elements, Vol. 3 (Pergamon, New York, 1977) Google Scholar
  12. 12.
    J.F. Janni, At. Data Nucl. Data Tables 27, 341 (1982) CrossRefADSGoogle Scholar
  13. 13.
    H. Paul, http://www.exphys.ac.at/stopping Google Scholar
  14. 14.
    R.M. Corless, H.G. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, Adv. Comput. Math. 5, 329 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    N. Bohr, Phys. Rev. 58, 654 (1940) zbMATHCrossRefADSGoogle Scholar
  16. 16.
    L.H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927) zbMATHCrossRefGoogle Scholar
  17. 17.
    E. Fermi, Z. Physik 48, 73 (1928) CrossRefADSGoogle Scholar
  18. 18.
    L.C. Northcliffe, Phys. Rev. 120, 1744 (1960) CrossRefADSGoogle Scholar
  19. 19.
    J.F. Ziegler, Appl. Phys. Lett. 31, 544 (1977) CrossRefADSGoogle Scholar
  20. 20.
    Cf. e.g. R. Cabrera-Trujillo, S.A. Cruz, J. Oddershede, J.R. Sabin, Phys. Rev. A 55, 2864 (1997) CrossRefADSGoogle Scholar
  21. 21.
    E. Nardi, D.V. Fisher, M. Roth, A. Blazevic, D.H.H. Hoffmann, Laser Part. Beams 24, 131 (2006) CrossRefGoogle Scholar
  22. 22.
    C.-L. Zhou, J.-X. Shao, X.-M. Chen, G.-Z. Sun, X.-R. Zou, Chin. Phys. B 17, 4193 (2008) CrossRefADSGoogle Scholar
  23. 23.
    For a review and comparison of some semiempirical models for effective charges or mean charge states, see C. Schmitt, J. LaVerne, D. Robertson, M. Bowers, W. Lu, P. Collon, Phys. Rev. A 80, 052711 (2009) CrossRefADSGoogle Scholar
  24. 24.
    T. Bortfeld, Med. Phys. 24, 2024 (1997) CrossRefGoogle Scholar
  25. 25.
    S. Agostinelli et al., Nucl. Instrum. Meth. A 506, 250 (2003) CrossRefADSGoogle Scholar
  26. 26.
    J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute for Physics and Chemistry, University of Southern DenmarkOdenseDenmark
  2. 2.Quantum Theory Project, Departments of Physics and ChemistryUniversity of FloridaGainesvilleUSA

Personalised recommendations