The European Physical Journal D

, Volume 57, Issue 2, pp 271–279

Entanglement dynamics and decoherence of an atom coupled to a dissipative cavity field

Quantum Information

Abstract

In this paper, we investigate the entanglement dynamics and decoherence in the interacting system of a strongly driven two-level atom and a single mode vacuum field in the presence of dissipation for the cavity field. Starting with an initial product state with the atom in a general pure state and the field in a vacuum state, we show that the final density matrix is supported on \({\mathbb C}^2\otimes{\mathbb C}^2\) space, and therefore, the concurrence can be used as a measure of entanglement between the atom and the field. The influences of the cavity decay on the quantum entanglement of the system are also discussed. We also examine the Bell-CHSH violation between the atom and the field and show that there are entangled states for which the Bell-BCSH inequality is not violated. Using the above system as a quantum channel, we also investigate the quantum teleportation of a generic qubit state and also a two-qubit entangled state, and show that in both cases the atom-field entangled state can be useful to teleport an unknown state with fidelity better than any classical channel.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992) Google Scholar
  2. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993) Google Scholar
  3. C.H. Bennett, D.P. Divincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54, 3824 (1996) Google Scholar
  4. R.F. Werner, Phys. Rev. A 40, 4277 (1989) Google Scholar
  5. J. Kofler, C. Brukner, Phys. Rev. Lett. 99, 180403 (2007) Google Scholar
  6. E. Joos, H.D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, I.O. Stamatescu, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer-Verlag, 2003) Google Scholar
  7. W. Dur, H.J. Briegel, Phys. Rev. Lett. 92, 180403 (2004) Google Scholar
  8. A.R.R. Carvalho, F. Minter, A. Buchleitner, Phys. Rev. Lett. 93, 230501 (2004) Google Scholar
  9. C. Simon, J. Kempe, Phys. Rev. A 65, 052327 (2002) Google Scholar
  10. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963) Google Scholar
  11. J.G. Peixoto de Faria, M.C. Nemes, Phys. Rev. A 59, 3918 (1999) Google Scholar
  12. L. Zhou, H.S. Song, Y.X. Luo, C. Li, Phys. Lett. A 284, 156 (2001) Google Scholar
  13. L. Sanz, K. Furuya, J. Opt. B: Quantum Semiclass. Opt. 4, S184 (2002) Google Scholar
  14. R.W. Rendel, Rajagopal, Phys. Rev. A 67, 062110 (2003) Google Scholar
  15. V.V. Dodonov, W.D. José, S.S. Mizrahi, J. Opt. B: Quantum Semiclass. Opt. 5, S567 (2003) Google Scholar
  16. G.-X. Li, K. Allaart, D. Lenstra, Phys. Rev. A 69, 055802 (2004) Google Scholar
  17. R. Tanas, Z. Ficek, J. Opt. B: Quantum Semiclass. Opt. 6, S90 (2004) Google Scholar
  18. M.A. Can, Ö. Çakir, A. Klyachko, A. Shumovsky, J. Opt. B: Quantum Semiclass. Opt. 6, S13 (2004) Google Scholar
  19. J. Gea-Banacloche, T.C. Burt, P.R. Rice, L.A. Orozco, Phys. Rev. Lett. 94, 053603 (2005) Google Scholar
  20. M. Janowicz, A. Orlowski, J. Phys. B: At. Mol. Opt. Phys. 39, 1763 (2006) Google Scholar
  21. M.H. Naderi, M. Soltanolkotabi, Eur. Phys. J. D 39, 471 (2006) Google Scholar
  22. L. Li, J. Zou, J.-G. Li, H.-P. Cui, B. Shao, J. Phys. B: At. Mol. Opt. Phys. 41, 085507 (2008) Google Scholar
  23. E. Solano, G.S. Agarwal, H. Walther, Phys. Rev. Lett. 90, 027903 (2003) Google Scholar
  24. F. Casagrande, A. Lulli, Open Syst. Inf. Dyn. 13, 437 (2006) Google Scholar
  25. P. Lougovski, F. Casagrande, A. Lulli, E. Solano, Phys. Rev. A 76, 033802 (2007) Google Scholar
  26. F. Casagrande, A. Lulli, Eur. Phys. J. D 46, 165 (2008) Google Scholar
  27. M. Bina, F. Casagrannde, A. Lulli, E. Solano, Phys. Rev. A 77, 033839 (2008) Google Scholar
  28. M. Bina, F. Casagrande, A. Lulli, Eur. Phys. J. D 49, 257 (2008) Google Scholar
  29. J.-S. Zhang, J.-B. Xu, Opt. Commun. 282, 2543 (2009) Google Scholar
  30. S.M. Barnett, P.M. Radmore, Methods in Theoretical Quantum Optics (Clarendon Press, Oxford, 1997) Google Scholar
  31. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998) Google Scholar
  32. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000) Google Scholar
  33. P. Lougovski, F. Casagrande, A. Lulli, B.-G. Englert, E. Solano, H. Walther, Phys. Rev. A 69, 023812 (2004) Google Scholar
  34. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969) Google Scholar
  35. R. Horodecki, P. Horodecki, M. Horodecki, Phys. Lett. A 200, 340 (1995) Google Scholar
  36. S. Popescu, Phys. Rev. Lett. 72, 797 (1994) Google Scholar
  37. S. Massar, S. Popescu, Phys. Rev. Lett. 74, 1259 (1995) Google Scholar
  38. N. Gisin, Phys. Lett. A 210, 157 (1996) Google Scholar
  39. G. Bowen, S. Bose, Phys. Rev. Lett. 87, 265901 (2001) Google Scholar
  40. S. Albeverio, S.M. Fei, W.L. Yang, Phys. Rev. A 66, 012301 (2002) Google Scholar
  41. A. Uhlmann, Rep. Math. Phys. 9, 273 (1976) Google Scholar
  42. R. Jozsa, J. Mod. Opt. 41, 2315 (1994) Google Scholar
  43. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. A 60, 1888 (1999) Google Scholar
  44. J. Lee, M.S. Kim, Phys. Rev. Lett. 84, 4236 (2000) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of IsfahanIsfahanIran
  2. 2.Quantum Optics Group, University of IsfahanIsfahanIran

Personalised recommendations