The European Physical Journal D

, Volume 57, Issue 2, pp 253–258 | Cite as

Ultrafast coherent population transfer driven by two few-cycle laser pulses

  • X. H. YangEmail author
  • Z. H. Zhang
  • Z. Wang
  • X. N. Yan
Quantum Optics


We investigate ultrafast coherent population transfer driven by few-cycle pump and Stokes laser pulses in the Λ-type three-level system with the stimulated Raman adiabatic passage technique beyond the rotating-wave approximation. In contrast to the case with the rotating wave approximation, the most efficient population transfer may be realized without the satisfaction of the one-photon resonances or two-photon resonance and the transfer efficiency depends critically on the Rabi frequencies and initial optical phases of the two laser fields when the peak Rabi frequencies are much larger than the respective transition frequencies. Moreover, complete and robust population transfer can still be obtained with the variations of the Rabi frequencies, pulse durations, and one-photon or two-photon detuning in a moderate range, though a considerable transient population may reside in the excited state. These abnormal behaviors result from the counterrotating terms, which are not taken into account in the traditional rotating wave approximation.


Rabi Frequency Population Transfer Pulse Area Stokes Pulse Floquet State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998) Google Scholar
  2. N.V. Vitanov, T. Halfmann, B.W. Shore, K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001) Google Scholar
  3. N.V. Vitanov, M. Fleischhauer, B.W. Shore, K. Bergmann, Adv. At. Mol. Opt. Phys. 46, 55 (2001) Google Scholar
  4. P. Kral, I. Thanopulos, M. Shapiro, Rev. Mod. Phys. 79, 53 (2007) Google Scholar
  5. X.H. Yang, S.Y. Zhu, Phys. Rev. A 77, 063822 (2008) Google Scholar
  6. X.H. Yang, S.Y. Zhu, Phys. Rev. A 78, 023818 (2008) Google Scholar
  7. M. Kaluza, J.T. Muckerman, Phys. Rev. A 51, 1694 (1995) Google Scholar
  8. L.W. Casperson, Phys. Rev. A 57, 609 (1998) Google Scholar
  9. G.M. Genkin, Phys. Rev. A 58, 758 (1998) Google Scholar
  10. B. Matisov, I. Mazets, L. Windholz, Quantum Semiclass. Opt. 7, 449 (1995) Google Scholar
  11. R.G. Unanyan, S. Guérin, H.R. Jauslin, Phys. Rev. A 62, 043407 (2000) Google Scholar
  12. J. Cheng, J.Y. Zhou, Phys. Rev. A 64, 065402 (2001) Google Scholar
  13. S. Guérin, H.R. Jauslin, Eur. Phys. J. D 2, 99 (1998) Google Scholar
  14. L.P. Yatsenko, B.W. Shore, K. Bergmann, V.I. Romanenko, Eur. Phys. J. D 4, 47 (1998) Google Scholar
  15. R.G. Unanyan, S. Guérin, B.W. Shore, K. Bergmann, Eur. Phys. J. D 8, 443 (2000) Google Scholar
  16. S. Guérin, R.G. Unanyan, L.P. Yatsenko, H.R. Jauslin, Opt. Express 4, 84 (1999) Google Scholar
  17. O.D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F.X. Kärtner, Phys. Rev. Lett. 87, 057401 (2001) Google Scholar
  18. A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V.S. Yakovlev, A. Scrinzi, T.W. Hänsch, F. Krausz, Nature 421, 611 (2003) Google Scholar
  19. P. Huang, X. Xie, X. Lü, J. Li, X. Yang, Phys. Rev. A 79, 043806 (2009) Google Scholar
  20. E.A. Shapiro, V. Milner, C.M. Jones, M. Shapiro, Phys. Rev. Lett. 99, 033002 (2007) Google Scholar
  21. E.A. Shapiro, A. Pe’er, J. Ye, M. Shapiro, Phys. Rev. Lett. 101, 023601 (2008) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of PhysicsShanghai UniversityShanghaiRepublic of China

Personalised recommendations