Advertisement

The European Physical Journal D

, Volume 57, Issue 2, pp 197–205 | Cite as

Structures and electronic properties of stoichiometric hydrogenated aluminum clusters

  • C. H. Yao
  • S. F. Zhao
  • J. R. Li
  • Y. W. Mu
  • J. G. Wan
  • M. Han
  • G. H. WangEmail author
Clusters and Nanostructures

Abstract

The lowest-energy geometries and electronic-structure properties have been obtained for AlnHn (n=1-10) clusters within the density-functional theory using the generalized gradient approximation for the exchange correlation potential. The resulting geometries show that the hydrogen atoms tend to occupy outside positions and no hollow positions are found. The subunit Aln of AlnHn (n=1-5) have little distortion, in comparison with corresponding pure Aln cluster, whereas the subunit Aln have large distortion from n=6. The stability has been investigated by analyzing the binding energy per atom and the second difference in energy, indicating that Al8H8 exhibit higher stability than others. The bonding property has been analyzed by calculating the Mulliken charges and Al–H distances. The calculated energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO), the vertical ionization potential, and the vertical electron affinity also confirm that Al8H8 is a stable cluster. The density of states (DOS) shows that AlnHn exhibit changes from molecular-like (Al1H1) to band-like structure (Al10H10) as n increases.

Keywords

Cluster Size Generalize Gradient Approximation High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Mulliken Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jijun Zhao, Lu Wang, Jianming Jia, Xiaoshuang Chen, Xiaolan Zhou, Wei Lu, Chem. Phys. Lett. 443, 29 (2007) Google Scholar
  2. Young-Kyu Han, Jaehoon Jung, Kyoung Hoon Kim, J. Chem. Phys. 122, 124319 (2009) Google Scholar
  3. Ujjal Das, Krishnan Raghavachan, J. Chem. Phys. 124, 021101 (2006) Google Scholar
  4. Z.T. Owens, J.D. Larkin, H.F. Schaefer III, J. Chem. Phys. 125, 164322 (2006) Google Scholar
  5. J. Moc, K. Bober, K. Mierzwicki, Chem. Phys. 327, 247 (2006) Google Scholar
  6. J.C. Stephens, E.E. Bolton, H.F. Schaefer III, L. Andrews, J. Chem. Phys. 107, 119 (1997) Google Scholar
  7. Z. Palagyi, R.S. Grev, H.F. Schaefer III, J. Am. Chem. Soc. 115, 1936 (1993) Google Scholar
  8. M.X. Chen, X.H. Yan, Chem. Phys. Lett. 439, 270 (2007) Google Scholar
  9. L.D. Speakman, J.M. Turney, H.F. Schaefer III, Chem. Phys. 331, 396 (2007) Google Scholar
  10. B. Kiran, P. Jena, X. Li, A. Grubistic, S.T. Stokes, G.F. Ganteför, K.H. Bowen, R, Burgert, H. Schnöckel, Phys. Rev. Lett. 98, 256802 (2007) Google Scholar
  11. Young-Kyu Han, Jaehoon Jung, Kyoung Hoon Kim, J. Chem. Phys. 122, 124319 (2005) Google Scholar
  12. Jaehoon Jung, Young-Kyu Han, J. Chem. Phys. 125, 0643006 (2006) Google Scholar
  13. Q.L. Lu, A.F. Jalbout, Q.Q. Luo, J.G. Wan, G.H. Wang, J. Chem. Phys. 128, 224707 (2008) Google Scholar
  14. A. Goldberg, I. Yarovsky, Phys. Rev. B 75, 195403 (2007) Google Scholar
  15. V.K. Kochnev, O.P. Charkin, N.M. Klimenko, Russian J. Inorg. Chem. 54, 1114 (2009) Google Scholar
  16. O.P. Charkin, V.K. Kochnev, N.M. Klimenko, Russian J. Inorg. Chem. 51, 1925 (2006) Google Scholar
  17. O.P. Charkin, N.M. Klimenko, D.O. Charkin, Russian J. Inorg. Chem. 51, 281 (2006) Google Scholar
  18. D.J. Henry, A. Varano, Yarovsky, J. Phys. Chem. A 113, 5832 (2009) Google Scholar
  19. D.J. Henry, I. Yarovsky, J. Phys. Chem. A 113, 2565 (2009) Google Scholar
  20. I. Yarovsky, A. Goldberg, Molecular Simulation 31, 475 (2005) Google Scholar
  21. S. Iijima, Nature 354, 56 (1991) Google Scholar
  22. DMOL is a density-functional theory package distributed by MSI; B. Delly, J. Chem. Phys. 92, 508 (1990) Google Scholar
  23. B. Delley, J. Chem. Phys. 113, 7756 (2000) Google Scholar
  24. J. Wang, Q.M. Ma, Z. Xie, Y. Liu, Y.C. Li, Phys. Rev. B 76, 035406 (2007) Google Scholar
  25. A.D. Becke, J. Chem. Phys. 88, 2547 (1988) Google Scholar
  26. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992) Google Scholar
  27. M. Methfessel, Phys. Rev. B 38, 1537 (1988) Google Scholar
  28. M. Methfessel, C.O. Rodriguez, O.K. Andersen, Phys. Rev. B 40, R2009 (1989) Google Scholar
  29. M. Methfessel, M. van Schilfgaarde, Phys. Rev. B 48, R4937 (1993) Google Scholar
  30. M. Methfessel, M. van Schilfgaarde, Int. J. Mod. Phys. B 7, 262 (1993) Google Scholar
  31. O.K. Andersen, Phys. Rev. B 12, 3060 (1975) Google Scholar
  32. O.K. Andersen, R.G. Woolley, Molec. Phys. 26, 905 (1975) Google Scholar
  33. M. Springborg, O.K. Andersen, J. Chem. Phys. 87, 7125 (1975) Google Scholar
  34. Bin Song, Chang-Hong Yao, Pei-Lin Cao, Phys. Rev. B 74, 035306 (2006) Google Scholar
  35. Chang-Hong Yao, Bin-Song, Pei-Lin Cao, Phys. Rev. B 70, 195431 (2004) Google Scholar
  36. Jinyu Hou, Bin Song, J. Chem. Phys. 128, (2008) 154304 Google Scholar
  37. Bao-Xing Li, Phys. Rev. B 71, 235311 (2005) Google Scholar
  38. M.F Cai, T.P. Djugan, V.E. Bondybey, Chem. Phys. Lett. 155, 430 (1989) Google Scholar
  39. J.-O. Joswig, M. Springborg, Phys. Rev. B 68, 085408 (2003) Google Scholar
  40. D.J. Wales, J.P.K. Doye, A. Dullweber, M.P. Hodges, F.Y. Naumkin, F. Calvo, J. Hernàndez-Rojas, T.F. Middleton, The Cambridge Cluster Database, URL: http: //wwwwales.ch.cam.ac.uk/CCD.html Google Scholar
  41. J.P.K. Doye, J. Chem. Phys. 119, 1136 (2003) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • C. H. Yao
    • 1
  • S. F. Zhao
    • 1
  • J. R. Li
    • 1
  • Y. W. Mu
    • 1
  • J. G. Wan
    • 1
  • M. Han
    • 1
  • G. H. Wang
    • 1
    Email author
  1. 1.National Laboratory of Solid State Microstructures and Department of Physics, Nanjing UniversityNanjingP.R. China

Personalised recommendations