The European Physical Journal D

, Volume 60, Issue 1, pp 11–20 | Cite as

The role of metal cation in electron-induced dissociation of tryptophan

  • L. FeketeováEmail author
  • M. W. Wong
  • R. A.J. O’HairEmail author
Topical issue on Molecular level assessments of radiation biodamage


The fragmentation of tryptophan (Trp) – metal complexes [Trp+M]+, where M = Cs, K, Na, Li and Ag, induced by 22 eV energy electrons was compared to [Trp+H]+. Additional insights were obtained through the study of collision-induced dissociation (CID) of [Trp+M]+ and through deuterium labelling. The electron-induced dissociation (EID) of [Trp+M]+ resulted in the formation of radical cations via the following pathways: (i) loss of M to form Trp+•, (ii) loss of an H atom to form [(Trp-H)+M]+•, and (iii) bond homolysis to form C2H4NO2M+•. Deuterium labelling suggests that H atom loss can occur from heteroatom and/or C–H positions. Other types of fragment ions observed include: C9H7NM+, C9H8N+, M+, C2H3NO2M+, CO2M+, C10H11N2M+, C10H9NOM+. Formation of C2H4NO2M+• and C9H7NM+ cations suggests that the metal interacts with both the backbone and aromatic side chain, thus implicating π-interactions for all M. CID of [Trp+M]+ resulted in: loss of metal cation (for M = Cs and K); successive loss of NH3 and CO as the dominant channel for M = Na, Li and Ag; formation of C2H3NO2M+. Preliminary DFT calculations were carried out on [Trp+Na]+ and [(Trp-H)+Na]+• which reveal that: the most stable conformation involves chelation by the backbone together with a \(\pi \)-interaction with the indole side chain; loss of H atom from \(\alpha \)-CH of the side chain is thermodynamically favoured over losses from other positions, with the resultant radical cation maintaining a (N, O, ring) chelated structure which is stabilized by conjugation.


Radical Cation Aromatic Side Chain Deuterium Labelling Atom Loss Bond Homolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. von Sonntag, The chemical basis of radiation biology (Taylor and Francis, London, 1987) Google Scholar
  2. 2.
    C. von Sonntag, in Physical and Chemical Mechanisms in Molecular Radiation Biology (Plenum Press, New York, 1991) Google Scholar
  3. 3.
    U. Uehara, H. Nikjoo, D.T. Goodhead, Radiat. Res. 152, 202 (1999) CrossRefGoogle Scholar
  4. 4.
    J.A. LaVerne, S.M. Pimblott, J. Phys. Chem. 99, 10540 (1995) CrossRefGoogle Scholar
  5. 5.
    E. Scifoni, E. Surdutovich, A. Solov’yov, I. Pshenichnov, I. Mishustin, W. Greiner, in Proceedings of the 5th International Conference on Radiation Damage in Biomolecular Systems (RADAM), edited by K. Tökési, B. Sulik (American Institute of Physics, 2008), p. 104 Google Scholar
  6. 6.
    E. Surdutovich, O.I. Obolensky, E. Scifoni, I. Pshenichnov, I. Mishustin, A.V. Solov’yov, W. Greiner, Eur. Phys. J. D 51, 63 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    B. Boudaiffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000) ADSCrossRefGoogle Scholar
  8. 8.
    L. Sanche, Eur. Phys. J. D 35, 367 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    S. Denifl, F. Zappa, I. Mahr, J. Lecointre, M. Probst, T. D. Märk, P. Scheier, Phys. Rev. Lett. 97, 043201 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    P. Sulzer, S. Ptasinska, F. Zappa, B. Mielewska, A.R. Milosavljevic, P. Scheier, T.D. Märk, I. Bald, S. Gohlke, M.A. Huels, E. Illenberger, J. Chem. Phys. 125, 044304 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    I. Ipolyi, P. Cicman, S. Denifl, V. Matejcik, P. Mach, J. Urban, P. Scheier, T.D. Märk, S. Matejcik, Int. J. Mass Spectrom. 252, 228 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    S. Ptasinska, S. Denifl, S. Gohlke, P. Scheier, E. Illenberger, T.D. Märk, Angew. Chem. Int. Ed. 45, 1893 (2006) CrossRefGoogle Scholar
  13. 13.
    R.A. Freitas Jr., Nanomedicine, Vol. I: Basic Capabilities (Landes Bioscience, Georgetown, 1999) Google Scholar
  14. 14.
    S.V. Jovanovic, M.G. Simic, Life Chem. Rep. 3, 124 (1985) Google Scholar
  15. 15.
    P. Gaikwad, K.I. Priyadarsini, B.S.M. Rao, Radiat. Phys. Chem. 77, 1124 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Gallivan, D.A. Dougherty, Proc. Natl. Acad. Sci. USA 96, 9459 (1999) ADSCrossRefGoogle Scholar
  17. 17.
    D.A. Dougherty, D.A. Stauffer, Science 250, 1558 (1990) ADSCrossRefGoogle Scholar
  18. 18.
    R.A. Kumpf, D.A. Dougherty, Science 261, 1708 (1993) ADSCrossRefGoogle Scholar
  19. 19.
    C. Miller, Science 261, 1692 (1993) ADSCrossRefGoogle Scholar
  20. 20.
    W.G. Zhong, J.P. Gallivan, Y.N. Zhang, L.T. Li, H.A. Lester, D.A. Dougherty, Proc. Natl. Acad. Sci. U.S.A. 95, 12088 (1998) ADSCrossRefGoogle Scholar
  21. 21.
    B. Roux, M. Karplus, J. Am. Chem. Soc. 115, 3250 (1993) CrossRefGoogle Scholar
  22. 22.
    D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, R. MacKinnon, Science 280, 69 (1998) ADSCrossRefGoogle Scholar
  23. 23.
    T. Yamaguchi, T. Ito, T. Sato, T. Shinbo, S. Nakao, J. Am. Chem. Soc. 121, 4078 (1999) CrossRefGoogle Scholar
  24. 24.
    A. Schiefner, J. Breed, L. Bosser, S. Kneip, J. Gade, G. Holtmann, K. Diederichs, W. Welte, E. Bremer, J. Biol. Chem. 279, 5588 (2004) CrossRefGoogle Scholar
  25. 25.
    C. Kroner, T. Guan, L. Gerace, G. Cingolani, J. Biol. Chem. 278, 16216 (2003) CrossRefGoogle Scholar
  26. 26.
    S. Sato, Z. He, M. Kaneda, M. Imai, H. Tsuchida, Nucl. Instrum. Meth. B 256, 506 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    O. Plekan, V. Feyer, R. Richter, M. Coreno, K.C. Prince, Molec. Phys. 106, 1143 (2008) ADSCrossRefGoogle Scholar
  28. 28.
    H. Abdoul-Carime, L. Sanche, Radiat. Res. 160, 86 (2003) CrossRefGoogle Scholar
  29. 29.
    H. Abdoul-Carime, S. Gohlke, E. Illenberger, Chem. Phys. Lett. 402, 497 (2005) ADSCrossRefGoogle Scholar
  30. 30.
    H. Lioe, R.A.J. O’Hair, G.E. Reid, J. Am. Soc. Mass Spectrom. 15, 65 (2004) CrossRefGoogle Scholar
  31. 31.
    H. Lioe, R.A.J. O’Hair, G. Reid, Rapid. Commun. Mass Spectrom. 18, 978 (2004) CrossRefGoogle Scholar
  32. 32.
    H. Lioe, R.A.J. O’Hair, Anal. Bioanal. Chem. 389, 1429 (2007) CrossRefGoogle Scholar
  33. 33.
    H. El Aribi, G. Orlova, A.C. Hopkinson, K.W.M. Siu, J. Phys. Chem. A 108, 3844 (2004) CrossRefGoogle Scholar
  34. 34.
    H. Kang, C. Dedonder-Lardeux, C. Jouvet, S. Martrenchard, G. Grégoire, C. Desfrançois, J.-P. Schermann, M. Barat, J.A. Fayeton, Phys. Chem. Chem. Phys. 6, 2628 (2004) CrossRefGoogle Scholar
  35. 35.
    V. Lepère, B. Lucas, M. Barat, J.A. Fayeton, V.J. Picard, C. Jouvet, P. Çarçabal, I. Nielsen, C. Dedonder-Lardeux, G. Grégoire, A. Fujii, J. Chem. Phys. 127, 134313 (2007) ADSCrossRefGoogle Scholar
  36. 36.
    J.M. Talley, B.A. Cerda, G. Ohanessian, C. Wesdemiotis, Chem. Eur. J. 8, 1377 (2002) CrossRefGoogle Scholar
  37. 37.
    M.M. Kish, G. Ohanessian, C. Wesdemiotis, Int. J. Mass Spectrom. 227, 509 (2003) CrossRefGoogle Scholar
  38. 38.
    R.C. Dunbar, J. Phys. Chem. A 104, 8067 (2000) CrossRefGoogle Scholar
  39. 39.
    M.-W. Yang, L.-T. Chen, Y.-C. Yang, Y.-P. Ho, J. Mass Spectrom. 42, 542 (2007) CrossRefGoogle Scholar
  40. 40.
    M. Rožman, Croat. Chim. Acta 78, 185 (2005) Google Scholar
  41. 41.
    C. Ruan, M.T. Rodgers, J. Am. Chem. Soc. 126, 14600 (2004) CrossRefGoogle Scholar
  42. 42.
    A. Gapeev, R.C. Dunbar, Int. J. Mass Spectrom 228, 825 (2003) CrossRefGoogle Scholar
  43. 43.
    V. Ryzhov, R.C. Dunbar, B. Cerda, C. Wesdemiotis, J. Am. Soc. Mass Spectrom. 11, 1037 (2000) CrossRefGoogle Scholar
  44. 44.
    N.C. Polfer, J. Oomens, R.C. Dunbar, Phys. Chem. Chem. Phys. 8, 2744 (2006) CrossRefGoogle Scholar
  45. 45.
    T. Shoeib, K.W.M. Siu, A.C. Hopkins, J. Phys. Chem. A 106, 6121 (2002) CrossRefGoogle Scholar
  46. 46.
    T. Tabarin, R. Antoine, M. Broyer, P. Dugourd, Eur. Phys. J. D 37, 237 (2006) ADSCrossRefGoogle Scholar
  47. 47.
    T. Tabarin, R. Antoine, I. Compagnon, M. Broyer, P. Dugourd, R. Mitrić, J. Petersen, V. Bonačić-Koutecký, Eur. Phys. J. D 43, 275 (2007) ADSCrossRefGoogle Scholar
  48. 48.
    J. Jover, R. Bosque, J. Sales, Dalton Trans. 6441 (2008) Google Scholar
  49. 49.
    C. Ruan, Z. Yang, N. Hallowita, M.T. Rodgers, J. Phys. Chem. A 109, 11539 (2005) CrossRefGoogle Scholar
  50. 50.
    R.A. Zubarev, Mass Spectrom. Rev. 22, 57 (2003) CrossRefGoogle Scholar
  51. 51.
    L. Feketeová, G.N. Khairallah, R.A.J. O’Hair, Eur. J. Mass Spectrom. 14, 107 (2008) CrossRefGoogle Scholar
  52. 52.
    L. Feketeová, R.A.J. O’Hair, Rapid Commun. Mass Spectrom. 23, 3259 (2009) CrossRefGoogle Scholar
  53. 53.
    P.M. Mayer, C. Poon, Mass Spectrom. Rev. 28, 608 (2009) CrossRefGoogle Scholar
  54. 54.
    J. Laskin, J.H. Futrell, Mass Spectrom. Rev. 24, 135 (2005) CrossRefGoogle Scholar
  55. 55.
    R. Malek, W. Metelmann-Strupat, M. Zeller, H. Muenster, Am. Biotech. Lab. 23, 8 (2005) Google Scholar
  56. 56.
    S. Horning, R. Malek, A. Wieghaus, M.W. Senko, J.E.P. Syka, in Proceedings of the 51st ASMS conference mass spectrometry and allied topics (Montreal, 2003) Google Scholar
  57. 57.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. 37, 785 (1988) ADSCrossRefGoogle Scholar
  58. 58.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993) ADSCrossRefGoogle Scholar
  59. 59.
    M.W. Wong, Chem. Phys. Lett. 256, 391 (1996) Google Scholar
  60. 60.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, GAUSSIAN 03, Gaussian, Inc., Wallingford CT, 2004 Google Scholar
  61. 61.
    NIST Chemistry webbook: Google Scholar
  62. 62.
    P.H. Cannington, N.S. Ham, J. Electron Spectros. Relat. Phenomena 32, 139 (1983) CrossRefGoogle Scholar
  63. 63.
    C.K. Barlow, D. Moran, L. Radom, W.D. McFadyen, R.A.J. O’Hair, J. Phys. Chem. A 110, 8304 (2006) CrossRefGoogle Scholar
  64. 64.
    E. Bagheri-Majdi, Y. Ke, G. Orlova, I.K. Chu, A.C. Hopkins, M. Siu, J. Phys. Chem. B 108, 11170 (2004) CrossRefGoogle Scholar
  65. 65.
    F. Rogalewicz, Y. Hoppilliard, G. Ohanessian, Int. J. Mass Spectrom. 195/196, 565 (2000) Google Scholar
  66. 66.
    T. Ly, S. Yin, J, A. Loo, R.R. Julian, Rapid Commun. Mass Spectrom. 23, 2099 (2009) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology, The University of MelbourneFlemington RoadAustralia
  2. 2.Department of ChemistryNational University of SingaporeSingaporeSingapore

Personalised recommendations