The European Physical Journal D

, Volume 56, Issue 2, pp 291–296 | Cite as

Photon losses depending on polarization mixedness

  • L. Memarzadeh
  • S. Mancini
Quantum Information


We introduce a quantum channel describing photon losses depending on the degree of polarization mixedness. This can be regarded as a model of quantum channel with correlated errors between discrete and continuous degrees of freedom. We consider classical information over a continuous alphabet encoded on weak coherent states as well as classical information over a discrete alphabet encoded on single photons using dual rail representation. In both cases we study the one-shot capacity of the channel and its behaviour in terms of correlation between losses and polarization mixedness.


Beam Splitter Quantum Channel Input State Classical Information Polarization Mixedness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. King, e-print arXiv:quant-ph/0103156; M.B.Hastings, Nat. Phys. 5, 255 (2009); T. Cubitt, A.W. Harrow, D. Leung, A. Montanaro, A. Winter, Commun. Math. Phys. 284, 281 (2008); G.G. Amosov, S. Mancini, Quantum. Inf. Comput. 9, 594 (2009)Google Scholar
  2. 2.
    D. Kretschmann, R.F. Werner, Phys. Rev. A 72, 062323 (2005)CrossRefADSGoogle Scholar
  3. 3.
    C. Macchiavello, G.M. Palma, Phys. Rev. A 65, 050301(R) (2002)CrossRefADSGoogle Scholar
  4. 4.
    C. Macchiavello, G.M. Palma, S. Virmani, Phys. Rev. A 69, 010303 (2004)CrossRefADSGoogle Scholar
  5. 5.
    E. Karpov, D. Daems, N.J. Cerf, Phys. Rev. A 74, 032320 (2006); V. Karimipour, L. Memarzadeh, Phys. Rev. A 74, 032332 (2006)CrossRefADSGoogle Scholar
  6. 6.
    K. Banaszek, A. Dragan, W. Wasilewski, C. Radzewicz, Phys. Rev. Lett. 92, 257901 (2004)CrossRefADSGoogle Scholar
  7. 7.
    V. Giovannetti, S. Mancini, Phys. Rev. A 71, 062304 (2005); G. Ruggeri, G. Soliani, V. Giovannetti, S. Mancini, Europhys. Lett. 70, 719 (2005); O.V. Pilyavets, V.G. Zborovskii, S. Mancini, Phys. Rev. 77, 052324 (2008); C. Lupo, O. Pilyavets, S. Mancini, New J. Phys. 11, 063023 (2009)CrossRefADSGoogle Scholar
  8. 8.
    N.J. Cerf, J. Clavareau, Ch. Macchiavello, J. Roland, Phys. Rev. A 72, 042330 (2005); G. Ruggeri, S. Mancini, Quantum Inf. Comput. 7, 265 (2007)CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, J.H. Shapiro, H.P. Yuen, Phys. Rev. Lett. 92, 027902 (2004)CrossRefADSGoogle Scholar
  10. 10.
    N. Gisin, R. Passy, P. Blasco, M.O. Van Deventer, R. Distl, H. Gilgen, B. Perny, R. Keys, E. Krause, C.C. Larsen, K. Mori, J. Pelayo, J. Vobian, Pure Appl. Opt. 4, 511 (1995)CrossRefADSGoogle Scholar
  11. 11.
    Ch.H. Bennett, D.P. DiVincenzo, J.A. Smolin, Phys. Rev. Lett. 78, 3217 (1997)zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    V. Karimipour, Z. Meghdadi, L. Memarzadeh, Phys. Rev. A 79, 032321 (2009)CrossRefADSGoogle Scholar
  13. 13.
    A.S. Holevo, IEEE Trans. Inf. Th. 44, 269 (1998); B. Schumacher, M.D. Westmoreland, Phys. Rev. A 56, 131 (1997)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di CamerinoCamerinoItaly

Personalised recommendations