Time stamping in EPRB experiments: application on the test of non-ergodic theories

  • M. B. Agüero
  • A. A. Hnilo
  • M. G. Kovalsky
  • M. A. Larotonda
Highlight Paper


In Einstein-Podolsky-Rosen-Bohm (EPRB) experiments, the record of the time of detection of each single photon (“time stamping”) provides much more information than the usual record of coincidence rates. It is a preferable technique for several reasons, and it can be realized with accessible means nowadays. As an illustration of its capacities, we show that a certain class of non-ergodic (local realistic) models that violates the Bell’s inequalities, even in ideally perfect setups, is disproved from the examination of time stamped files. This class of models, which has remained untested until now, exploits the finite size of the time window defining the coincidences, and it cannot be disproved by measuring coincidence rates. We use not only our own experimental data, but also the data obtained in the Innsbruck experiment with random variable analyzers.


42.50.Xa Optical tests of quantum theory 03.67.Dd Quantum cryptography and communication security 03.65.-w Quantum mechanics 


  1. 1.
    J. Clauser, A. Shimony, Rep. Prog. Phys. 41, 1881 (1978)CrossRefADSGoogle Scholar
  2. 2.
    The term “non-ergodic theory” was proposed by V. Buonomano; see e.g. Quantum Mechanics vs. Local Realism (Plenum, New York, 1988)Google Scholar
  3. 3.
    Systems with delay, i.e., described by equations of the type: dx/dt = f(x(tτ)), evolve in a phase space with infinite degrees of freedom and are able to produce a practically random output, even if the dynamics are strictly deterministicGoogle Scholar
  4. 4.
    R. Gill (with an Appendix by J. Larsson); Accardi contra Bell (cum mundi): the impossible coupling; arXiv: quant-ph/0110137Google Scholar
  5. 5.
    G.C. Scalera, Lett. Nuov. Cim. 38, 16 (1983)CrossRefGoogle Scholar
  6. 6.
    A. Hnilo, Found. Phys. 21, 547 (1991)CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    A. Hnilo, A. Peuriot, G. Santiago, Found. Phys. Lett. 15, 359 (2002)CrossRefGoogle Scholar
  8. 8.
    A. Hnilo, M. Kovalsky, G. Santiago, Found. Phys. 37, 80 (2007)zbMATHCrossRefADSGoogle Scholar
  9. 9.
    G.C. Scalera, Lett. Nuov. Cim. 40, 353 (1984)CrossRefMathSciNetGoogle Scholar
  10. 10.
    S. Notarrigo, Nuov. Cim. 83, 173 (1984)CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    P. Kwiat, E.Waks, A. White, I. Appelbaum, P. Eberhard, Phys. Rev. A 60, R773 (1999)CrossRefADSGoogle Scholar
  12. 12.
    G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 81, 5039 (1998); also: G. Weihs, Ph.D. thesis, University of Vienna, 1999; also see reference [8] abovezbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    G. Weihs, private communication, The drift between clocks would also be the cause of the low dimension dynamics observed in reference [8] aboveGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. B. Agüero
    • 1
  • A. A. Hnilo
    • 1
  • M. G. Kovalsky
    • 1
  • M. A. Larotonda
    • 1
  1. 1.Centro de Investigaciones en Laseres y Aplicaciones (CEILAP) (CITEFA-CONICET-UNSAM), CITEFA, J.B. de La Salle 4397Villa MartelliArgentina

Personalised recommendations