Theoretical studies on dielectronic recombination of neonlike gold and its effects on plasma ionization balance and radiation energy

  • X. J. Liu
  • Y. Z. Qu
  • B. J. Xiao
  • J. G. WangEmail author
Atomic Physics


The dielectronic recombination (DR) of neonlike gold ions is investigated employing the flexible atomic code based on the relativistic configuration interaction method, and its influence on the ionization balance and radiation energy in high-temperature plasma is also studied. The total resonance strength for LMM configuration complex is in a good agreement with the experimental measurement and other theoretical works. The DR rate coefficients are calculated and compared with the three-body recombination and radiative recombination rate coefficients. The DR process is the dominant recombination mechanism of Ne-like gold ions for plasma with temperature Te≥6.5 keV and density ne≤2×1022 cm-3, which is close to the condition of X-ray conversion region in the inertial confinement fusion. Moreover, the DR satellite spectra of LMM, LMN and LMO resonances are simulated, and compared with the intensities of the corresponding resonance lines induced by the electron impact excitation. The intensity ratio of the satellite line 3D’ \([(2p^{5}_{3/2}3d_{3/2}3d_{5/2})_{J=5/2}\)\((2p^{6}3d_{3/2})_{ J=3/2}]\) and the resonance line 3D \([(2p^{5}_{3/2}3d_{5/2})_{J=1}\)\((2p^{6})_{J=0}]\) is given, which can be applied for diagnostics of plasma temperature.


52.20.Fs Electron collisions 34.80.Dp Atomic excitation and ionization 32.80.Zb Autoionization 


  1. A.H. Gabriel, T.M. Paget, J. Phys. B 5, 673 (1972) Google Scholar
  2. D.E. Hinkel et al., Phys. Plasmas 12, 056305 (2005) Google Scholar
  3. D.E. Hinkel et al., Phys. Rev. Lett. 96, 195001 (2006) Google Scholar
  4. G.V. Brown, S.B. Hansen, E. Träbert, P. Beiersdorfer, K. Widmann, M.H. Chen, H.K. Chung, J.H.T. Clementson, M.F. Gu, D.B. Thorn, Phys. Rev. E 77, 066406 (2008) Google Scholar
  5. D.A. Knapp, Z. Phys. D 21, S143 (1991) Google Scholar
  6. M.B. Schneider, D.A. Knapp, M.H. Chen, J.H. Scofield, P. Beiersdorfer, C.L. Bennett, J.R. Henderson, R.E. Marrs, M.A. Levine, Phys. Rev. A 45, R1291 (1992) Google Scholar
  7. E. Träbert, S.B. Hansen, P. Beiersdorfer, G.V. Brown, K. Widmann, H.K. Chung, Rev. Sci. Instrum. 79, 10E313 (2008) Google Scholar
  8. M.F. Gu, Astrophys. J. 582, 1241 (2003) Google Scholar
  9. M.F. Gu, Astrophys. J. 589, 1085 (2003) Google Scholar
  10. M.F. Gu, Astrophys. J. 590, 1131 (2003) Google Scholar
  11. M.J. Seaton, Planet. Space. Sci. 12, 55 (1964) Google Scholar
  12. Y. Zhang, Q.R. Zhu, S.F. Pan, High Power Laser and Particle Beams 8, 298 (1996) Google Scholar
  13. E. Behar, P. Mandelbaum, J.L. Schwob, A. Bar-Shalom, J. Oreg, W.H. Goldstein, Phys. Rev. A 52, 3770 (1995); E. Behar, P. Mandelbaum, J.L. Schwob, A. Bar-Shalom, J. Oreg, W.H. Goldstein, Phys. Rev. A 54, 3070 (1996) Google Scholar
  14. G.A. Chandler, M.H. Chen, D.H.H. Hoffmann, Phys. Rev. A 39, 565 (1989) Google Scholar
  15. M.J. Vilkas, Y. Ishikawa, E. Träbert, Eur. Phys. J. D 41, 77 (2007) Google Scholar
  16. J.G. Wang, Y. Zou, C.Z. Dong, J.M. Li, Chin. Phys. Lett. 12, 530 (1995) Google Scholar
  17. F.C. Meng, C.Y. Chen, X.H. Shi, Y.S. Wang, Y.M. Zou, M.F. Gu, J. Phys. B 40, 4269 (2007) Google Scholar
  18. T.M. Shen, C.Y. Chen, Y.S. Wang, Y.M. Zou, M.F. Gu, J. Phys. B 40, 3075 (2007) Google Scholar
  19. Y.Z. Qu, J.G. Wang, J.K. Yuan, J.M. Li, Phys. Rev. A 52, 1033 (1998) Google Scholar
  20. J.G. Wang, T. Kato, I. Murakami, Phys. Rev. A 60, 2104 (1999) Google Scholar
  21. F.C. Jahoda, E.M. Little, W.E. Quinn, G.A. Sawyer, T.F. Stratton, Phys. Rev. 119, 843 (1960) Google Scholar
  22. J.W. Sun, High Temperature Plasma X-ray Spectroscopy (National Defense Industry Press, Beijing, 2003) (in Chinese) Google Scholar
  23. P. Beiersdorfer, M. Bitter, S. Von Goeler, S. Cohen, K.W. Hill, J. Timberlake, R.S. Walling, M.H. Chen, P.L. Hagelstein, J.H. Scofield, Phys. Rev. A 34, 1297 (1986) Google Scholar
  24. J.G. Wang, T.Q. Chang, Chin. Phys. Lett. 15, 101 (1998) Google Scholar
  25. J.G. Wang, T.Q. Chang, T. Kato, Eur. Phys. J. D 5, 167 (1999)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute of Plasma Physics, Chinese Academy of SciencesHefeiP.R. China
  2. 2.Graduate University of the Chinese Academy of SciencesBeijingP.R. China
  3. 3.Institute of Applied Physics and Computational MathematicsBeijingP.R. China

Personalised recommendations