Efficient atomization of cesium metal in solid helium by low energy (10 μJ) femtosecond pulses

  • M. Melich
  • J. Dupont-RocEmail author
  • Ph. Jacquier
Atomic Physics


Metal atoms in solid and liquid helium-4 have attracted some interest either as a way to keep the atoms in a weakly perturbing matrix, or using them as a probe for the helium host medium. Laser sputtering with nanosecond pulsed lasers is the most often used method for atom production, resulting however in a substantial perturbation of the matrix. We show that a much weaker perturbation can be obtained by using femtosecond laser pulses with energy as low as 10 μJ. As an unexpected benefit, the atomic density produced is much higher.


67.80.B- Solid 4He 61.72.S- Impurities in crystals 06.60.Jn High-speed techniques 


  1. B. Tabbert, H. Günther, G.Z. Putlitz, J. Low Temp. Phys. 109, 653 (1997) Google Scholar
  2. P. Moroshkin, A. Hofer, S. Ulzega, A. Weis, Low Temp. Phys. 32, 981 (2006) Google Scholar
  3. J.P. Toennies, A.F. Vilesov, Angew. Chem. Int. Ed. 43, 379 (2004) Google Scholar
  4. F. Stienkemeier, K.K. Lehmann, J. Phys. B : At. Mol. Opt. Phys. 39, R127 (2006) Google Scholar
  5. M. Hartmann, F. Mielke, J.P. Toennies, A.F. Vilesov, G. Benedek, Phys. Rev. Lett. 76, 4560 (1996) Google Scholar
  6. S. Grebenev, J.P. Toennies, A.F. Vilesov, Science 279, 2083 (1998) Google Scholar
  7. E. Lugovoj, J.P. Toennies, A. Vilesov, J. Chem. Phys. 112, 8217 (2000) Google Scholar
  8. J.H. Reho, J. Higgins, M. Nooijen, K.K. Lehmann, G. Scoles, M. Gutowski, J. Chem. Phys. 115, 10265 (2001) Google Scholar
  9. K. Ishikawa, A. Hatakeyama, K. Gosyono-o, S. Wada, Y. Takahashi, T. Yabuzaki, Phys. Rev. B 56, 780 (1997) Google Scholar
  10. Q. Hui, M. Takami, J. Low Temp. Phys. 119, 393 (2000) Google Scholar
  11. M. Arndt, S.I. Kanorsky, A. Weis, T.W. Hänsch, Phys. Lett. A 174, 298 (1993) Google Scholar
  12. M.A. Bouchiat, C. Bouchiat, Eur. Phys. J. D 15, 5 (2001) Google Scholar
  13. H. Bauer, M. Beau, B. Friedl, C. Marchand, K. Miltner, H.J. Reyher, Phys. Lett. A 146, 134 (1990) Google Scholar
  14. A. Fujisaki, K. Sano, T. Kinoshita, Y. Takahashi, T. Yabuzaki, Phys. Rev. Lett. 71, 1039 (1993) Google Scholar
  15. E.B. Gordon, Low Temp. Phys. 30, 756 (2004) Google Scholar
  16. J.H.M. Beijersbergen, Q. Hui, M. Takami, Phys. Lett. A 181, 393 (1993) Google Scholar
  17. S.I. Kanorsky, M. Arndt, R. Dziewior, A. Weis, T.W. Hänsch, Phys. Rev. B 49, 3645 (1994) Google Scholar
  18. M. Arndt, R. Dziewior, S. Kanorsky, A. Weis, T.W. Hänsch, Z. Phys. B 98, 377 (1995) Google Scholar
  19. T. Furukawa, Y. Matsuo, A. Hatakeyama, Y. Fukuyama, T. Kobayashi, H. Izumi, T. Shimoda, Phys. Rev. Lett. 96, 095301 (2006) Google Scholar
  20. M. Melich, J. Dupont-Roc, Ph. Jacquier, J. Low Temp. Phys. 150, 301 (2008) Google Scholar
  21. S. Kanorsky, S. Lang, T. Eichler, K. Winkler, A. Weis, Phys. Rev. Lett. 81, 401 (1998) Google Scholar
  22. K.O. Keshishev, A.Y. Parshin, A.B. Babkin, Sov. Phys. JETP 53, 362 (1981) Google Scholar
  23. S. Kanorsky, A. Weis, M. Arndt, R. Dziewior, T.W. Hänsch, Z. Phys. B 98, 371 (1995) Google Scholar
  24. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14, 2717 (1997) Google Scholar
  25. O. Bünermann, M. Mudrich, M. Weidemüller, F. Stienkemeier, J. Chem. Phys. 121, 8880 (2004) Google Scholar
  26. A. Hofer, P. Moroshkin, S. Ulzega, A. Weis, Eur. Phys. J. D 46, 9 (2008) Google Scholar
  27. J.D. Jackson, Classical Electrodynamics (John Wiley & Sons, 1975) Google Scholar
  28. B. Cagnac, J.P. Faroux, Lasers, Collection Savoirs Actuels (EDP Sciences/CNRS Éditions, 2002) Google Scholar
  29. M. Melich, Ph. D. thesis, Université P. et M. Curie, 2008, Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Laboratoire Kastler Brossel, ENS, UPMC-Paris 6, CNRSParisFrance

Personalised recommendations