Non-Markovian effects on entanglement dynamics in lossy cavities

  • Y. J. Zhang
  • Z. X. Man
  • Y. J. XiaEmail author
Quantum Optics


We consider the non-markovian entanglement dynamics of two independent atoms, each off-resonantly coupling with a zero temperature reservoir. For two types of initial entanglement, corresponding to spin correlated and anti-correlated Bell-like states |φ〉 and |ψ〉, we study the dependence of the two-qubit entanglement transfer on both the off-resonant interactions and the cavity pseudomode decay. The speed of the entanglement transfer is related to the choice of the atom detuning from the cavity pseudomode, the cavity pseudomode decay and the relative coupling. Furthermore, compared to the ideal cavities, entanglement transfer and sudden death can not be prevented using off-resonant interactions in the lossy cavities, and the conservation rules are always satisfied in the off-resonant and lossy system.


03.65.Ud Entanglement and quantum nonlocality 03.67.Hk Quantum communication 


  1. Q. Aturchet te, C.S. Wood, B.E. King, C.J. Myatt, D. Leibfried, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. Lett. 81, 3631 (1998) Google Scholar
  2. B. Julsgaard, A. Kozhekin, E.S. Polzik, Nature 413, 400 (2001) Google Scholar
  3. A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 47, 460 (1981) Google Scholar
  4. T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004); T. Yu, J.H. Eberly, Phys. Rev. Lett. 97, 140403 (2006); J.H. Eberly, T. Yu, Science 316, 555 (2007); T. Yu, J.H. Eberly, Science 323, 598 (2009) Google Scholar
  5. M.P. Almeida et al., Science 316, 579 (2007) Google Scholar
  6. J. Laurat, K.S. Choi, H. Deng, C.W. Chou, H.J. Kimble, Phys. Rev. Lett. 99, 180504 (2007) Google Scholar
  7. P. Marek, J. Lee, M.S. Kim, Phys. Rev. A 77, 032302 (2008) Google Scholar
  8. A. Al-Qasimi, D.F.V. James, Phys. Rev. A 77, 012117 (2008) Google Scholar
  9. B. Bellomo, R.L. Franco, G. Compagno, Phys. Rev. Lett. 99, 160502 (2007); B. Bellomo, R.L. Franco, G. Compagno, Phys. Rev. A 77, 032342 (2008) Google Scholar
  10. F. Francica, S. Maniscalco, J. Piilo, F. Plastina, K.A. Suominen, Phys. Rev. A 79, 032310 (2009) Google Scholar
  11. C.E. López, G. Romero, F. Lastra, E. Solano, J.C. Retamal, Phys. Rev. Lett. 101, 080503 (2008) Google Scholar
  12. M. Yönaç, T. Yu, J.H. Eberly, J. Phys. B: At. Mol. Opt. Phys. 40, S45 (2007) Google Scholar
  13. M. Yönaç, T. Yu, J.H. Eberly, J. Phys. B: At. Mol. Opt. Phys. 39, S621 (2006) Google Scholar
  14. Y.J. Zhang, Z.X. Man, Y.J. Xia, J. Phys. B: At. Mol. Opt. Phys. 42, 095503 (2009) Google Scholar
  15. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998) Google Scholar
  16. S. Chan, M.D. Reid, Z. Ficek, J. Phys. B: At. Mol. Opt. Phys. 42, 065507 (2009) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Physics, Qufu Normal UniversityShandong Provincial Key Laboratory of Laser Polarization and Information TechnologyQufuP.R. China

Personalised recommendations