Advertisement

Electron–electron interaction effects in heliumlike atoms confined in finite external square-well potential

  • S. A. Ndengué
  • O. MotaponEmail author
Atomic Physics

Abstract

A B-spline-based configuration interaction method is used to compute the energy levels of the ground and a few excited states of heliumlike atoms confined in a finite external square-well potential, as a function of the depth of the confining shell potential. The electron probability density and the dependence of the energy levels in the shell potential are used to account for the electron-electron interaction when the atoms are submitted to such an environment.

PACS

31.15.ve Electron correlation calculations for atoms and ions: ground state 31.15.vj Electron correlation calculations for atoms and ions: excited states 31.15.xt Variational techniques 37.10.gh Atom traps and guides 

References

  1. B.M. Gimarc, J. Chem. Phys. 25, 4395 (1992) Google Scholar
  2. Y. Accad, C.L. Pekeris, B. Schiff, Phys. Rev. A 4, 516 (1971) Google Scholar
  3. A. Moumeni, O. Dulieu, C. Le Sech, J. Phys. B: At. Mol. Phys. 23, L739 (1990) Google Scholar
  4. L.D.A. Siebbeles, D.P. Marshall, C. Le Sech, J. Phys. B: At. Mol. Phys. 26, L321 (1993) Google Scholar
  5. C. Le Sech, J. Phys. B: At. Mol. Phys. 30, L47 (1997) Google Scholar
  6. A. Banerjee, C. Kamal, A. Chowdhury, Phys. Lett. A 350, 121 (2006) Google Scholar
  7. N. Aquino, A. Flores-Riveros, J.F. Rivas-Silva, Phys. Lett. A 307, 326 (2006) Google Scholar
  8. S.H. Patil, Y.P. Varshni, Can. J. Phys. 82, 647 (2004) Google Scholar
  9. R. Rivelino, J.D.M. Vianna, J. Phys. B: At. Mol. Phys. 34, L645 (2001) Google Scholar
  10. T. Winata, A. Kartono, Eur. Phys. J. D 28, 307 (2004) Google Scholar
  11. E. Foumouo, G. Lagmago Kamta, G. Edah, B. Piraux, Phys. Rev. A 74, 063409 (2006) Google Scholar
  12. S. Laulan, H. Bachau, B. Piraux, J. Bauer, G. Lagmago Kamta, J. Mod. Optics 50, 353 (2003) Google Scholar
  13. L. Liu, L. Li, L. Wu, Z. Zhang, Comput. Phys. Commun. 70, 417 (1998) Google Scholar
  14. T.-N. Chang, Many-body theory of atomic structure and photoionization (World Scientific, Singapore 1993), p. 213 Google Scholar
  15. C. Joslin, S. Goldman, J. Phys. B: At. Mol. Phys. 25, 1965 (1992) Google Scholar
  16. M. Neek-Amal, G. Tayebirad, R. Asgari, J. Phys. B: At. Mol. Phys. 40, 1509 (2007) Google Scholar
  17. V.K. Dolmatov, A.S. Baltenkov, J.-P. Connerade, S.T. Manson, Radiat. Phys. Chem. 70, 417 (2004) Google Scholar
  18. J.-P. Connerade, V.K. Dolmatov, P.A. Lakshmi, S.T. Manson, J. Phys. B: At. Mol. Phys. 32, L239 (1999) Google Scholar
  19. J.-P. Connerade, V.K. Dolmatov, S.T. Manson, J. Phys. B: At. Mol. Phys. 32, L395 (1999) Google Scholar
  20. J.-P. Connerade, V.K. Dolmatov, P.A. Lakshmi, J. Phys. B: At. Mol. Phys. 33, 251 (2000) Google Scholar
  21. J.-P. Connerade, V.K. Dolmatov, P.A. Lakshmi, J. Phys. B: At. Mol. Phys. 33, 2279 (2000) Google Scholar
  22. V.K. Dolmatov, S.T. Manson, J. Phys. B: At. Mol. Phys. 41, 165001 (2008) Google Scholar
  23. V.K. Dolmatov, P. Brewer, S.T. Manson, Phys. Rev. A 78, 013415 (2008) Google Scholar
  24. M.Ya. Amusia, A.S. Baltenkov, L.V. Chernysheva, J. Phys. B: At. Mol. Phys. 41, 165201 (2008) Google Scholar
  25. S.A. Ndengué, O. Motapon, J. Phys. B: At. Mol. Phys. 41, 045001 (2008) Google Scholar
  26. H.X. Qiao, T.-Y. Shi, B.-W. Li, Commun. Theor. Phys. 37, 221 (2002) Google Scholar
  27. Y.B. Xu, M.Q. Tan, U. Becker, Phys. Rev. Lett. 76, 3538 (1996) Google Scholar
  28. A. Lyras, H. Bachau, J. Phys. B: At. Mol. Phys. 38, 1119 (2005) Google Scholar
  29. M. Madjet, H.S. Chakraborty, J.M. Rost, S.T. Manson, J. Phys. B: At. Mol. Phys. 41, 105101 (2008) Google Scholar
  30. W.A. Fletcher, Computational Galerkin Methods (Springer, New York, 1984) Google Scholar
  31. J. Sapirstein, W.R Johnson, J. Phys. B: At. Mol. Phys. 29, 5213 (1996) Google Scholar
  32. W.R Johnson, S.A Blundell, J. Sapirstein, Phys. Rev. A 37, 307 (1988) Google Scholar
  33. A.N. Artemyev, E.V. Ludena, V.V. Karasiev, J. Comput. Chem. 25, 368 (2004) Google Scholar
  34. F. Martín, J. Phys. B: At. Mol. Opt. Phys. 32, R197 (1999) Google Scholar
  35. Y.V. Vanne, A. Saenz, J. Phys. B: At. Mol. Phys. 37, 4101 (2004) Google Scholar
  36. H. Bachau, E. Cormier, P. Decleva, J.E. Hansen, F. Martin, Rep. Prog. Phys. 64, 1815 (2001) Google Scholar
  37. I. Sanchez, F. Martin, J. Phys. B: At. Mol. Phys. 30, 679 (1997); I. Sanchez, F. Martin, Phys. Rev. Lett. 79, 1654 (1997); I. Sanchez, F. Martin, J. Chem. Phys. 106, 7720 (1997); I. Sanchez, F. Martin, J. Chem. Phys. 107, 8391 (1997) Google Scholar
  38. C. de Boor, A Practical Guide to Splines (Springer-Verlag, New York, 1978) Google Scholar
  39. O. Peyrusse, J. Quant. Spect. Radiat. Trans. 99, 469 (2005) Google Scholar
  40. M.Ya. Amusia, E.Z. Liverts, V.B. Mandelzweig, Phys. Rev. A 74, 042712 (2006) Google Scholar
  41. Z. Wang, D. Liu, K. Su, H. Fan, Y. Li, Z. Wen, Chemical Physics 331, 309 (2007) Google Scholar
  42. A.A. Levin, N.N. Brevslavskaya, Russian Chemical Bulletin 54, 9 1999 (2005) Google Scholar
  43. N.N. Breslavskaya, A.A. Levin, A.L. Buchachenko, Russian Chemical Bulletin 53, 1 18 (2004) Google Scholar
  44. J. Yin, S. Zhang, Z. Sun, X. Li, J. Mol. Struct. Theochem 816, 53 (2007) Google Scholar
  45. R.B. Darzynkiewicz, G. Scuseria, J. Chem. Phys. A 101, 7141 (1997) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Laboratoire de Physique Fondamentale, UFD Physique et Sciences de l’Ingénieur, University of DoualaDoualaCameroon

Personalised recommendations