Advertisement

Structure and stability of AgXen Z(\({\sf n=1}\)–3, \({\sf Z=-1}\), 0, +1) clusters. Theoretical insights

  • X. LiEmail author
  • X. Cao
  • J. H. Jiang
  • Y. F. Zhao
Molecular Physics and Chemical Physics

Abstract

The structure and stability of AgXen Z(n=1–3, Z=-1, 0, +1) cluster series at CCSD(T) theoretical level have been investigated. It is shown that the cations are more stable and have more compact geometries than the anions and neutrals. The role of the interaction was explained using the natural bond orbital (NBO) analysis.

PACS

31.15.ar Strongly correlated electron systems: generalized tight-binding method 

References

  1. A. Freitag, Ch. Van Wüllen, V. Staemmler, Chem. Phys. 192, 267 (1995) Google Scholar
  2. L.R. Brock, M.A. Duncan, J. Chem. Phys. 103, 9200 (1995) Google Scholar
  3. P. Pyykkö, J. Am. Chem. Soc. 117, 2067 (1995) Google Scholar
  4. R. Kometer, N. Schwentner, J. Chem. Phys. 106, 51 (1997) Google Scholar
  5. J.P. Read, A.D. Buckingham, J. Am. Chem. Soc. 119, 9010 (1997) Google Scholar
  6. D. Schröder, H. Schwarz, J. Hrusak, P. Pyykkö, Inorg. Chem. 37, 624 (1998) Google Scholar
  7. V. Shah, H.F. Bowen, B. Space, J. Chem. Phys. 112, 10998 (2000) Google Scholar
  8. S. Seidel, K. Seppelt, Science 290, 117 (2000) Google Scholar
  9. C.J. Evans, A. Lesarri, M.C.L. Gerry, J. Am. Chem. Soc. 122, 6100 (2000) Google Scholar
  10. C.J. Evans, M.C.L. Gerry, J. Chem. Phys. 112, 1321 (2000) Google Scholar
  11. C.J. Evans, M.C.L. Gerry, J. Chem. Phys. 112, 9363 (2000) Google Scholar
  12. C.J. Evans, D.S. Rubinoff, M.C.L. Gerry, Phys. Chem. Chem. Phys. 2, 3943 (2000) Google Scholar
  13. L.M. Reynard, C.J. Evans, M.C.L. Gerry, J. Mol. Spectrosc. 206, 33 (2001) Google Scholar
  14. N.R. Walker, L.M. Reynard, M.C.L. Gerry, J. Mol. Struct. 612, 109 (2002) Google Scholar
  15. C.C. Lovallo, M. Klobukowski, Chem. Phys. Lett. 368, 593 (2003) Google Scholar
  16. J.M. Thomas, N.R. Walker, S.A. Cooke, M.C.L. Gerry, J. Am. Chem. Soc. 126, 1235 (2004) Google Scholar
  17. S.A. Cooke, M.C.L. Gerry, J. Am. Chem. Soc. 126, 17000 (2004) Google Scholar
  18. S.A. Cooke, M.C.L. Gerry, Phys. Chem. Chem. Phys. 6, 3248 (2004) Google Scholar
  19. J.M. Michaud, S.A. Cooke, M.C.L. Gerry, Inorg. Chem. 43, 3871 (2004) Google Scholar
  20. T.K. Ghanty, J. Chem. Phys. 123, 074323 (2005) Google Scholar
  21. P. Lantto, J. Vaara, J. Chem. Phys. 125, 174315 (2006) Google Scholar
  22. J.M. Michaud, M.C.L. Gerry, J. Am. Chem. Soc. 128, 7613 (2006) Google Scholar
  23. T.K. Ghanty, J. Chem. Phys. 124, 124304 (2006) Google Scholar
  24. A. Yousef, S. Shrestha, L.A. Viehland, E.P.F. Lee, B.R. Gray, V.L. Ayles, T.G. Wright, W.H. Breckenridge, J. Chem. Phys. 127, 154309 (2007) Google Scholar
  25. R.J. Plowright, V.L. Ayles, M.J. Watkins, A.M. Gardner, R.R. Wright, Ti.G. Wright, W.H. Breckenridge, J. Chem. Phys. 127, 204308 (2007) Google Scholar
  26. L. Belpassi, I. Infante, F. Tarantelli, L. Visscher, J. Am. Chem. Soc. 130, 1048 (2008) Google Scholar
  27. R.J. Plowright, M.J. Watkins, A.M. Gardner, T.G. Wright, W.H. Breckenridge, F. Wallimann, S. Leutwyler, J. Chem. Phys. 129, 154315 (2008) Google Scholar
  28. M. Chun-Hao, H.A. Witek, J. Chem. Phys. 129, 244310 (2008) Google Scholar
  29. W.H. Breckenridge, V.L. Ayles, T.G. Wright, J. Phys. Chem. A 112, 4209 (2008) Google Scholar
  30. A. Nicklass, M. Dolg, H. Stoll, H. Preuss, J. Chem. Phys. 102, 8942 (1995) Google Scholar
  31. D. Schröder, J.N. Harvey, M. Aschi, H. Schwarz, J. Chem. Phys. 108, 8446 (1998) Google Scholar
  32. L. Xinying, Z. Yongfang, J. Xiaogong, L. Fengli, H. Fengyou, Int. J. Quant. Chem. 106, 1086 (2006) Google Scholar
  33. D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta. 77, 123 (1990) Google Scholar
  34. R.L. Martin, J. Chem. Phys. 86, 5027 (1987) Google Scholar
  35. P. Pyykkö, N. Runeberg, F. Mendizabal, Chem. Eur. J. 3, 1451 (1997) Google Scholar
  36. M.J. Frisch et al., Gaussian 03W (Gaussian, Inc., Pittsburgh, PA, 2003) Google Scholar
  37. S.F. Boys, F. Bernardi, Molec. Phys. 19, 553 (1970) Google Scholar
  38. A.E. Reed, F. Weinhold, J. Chem. Phys. 78, 4066 (1983) Google Scholar
  39. J.P. Foster, F. Weinhold, J. Am. Chem. Soc. 102, 7211 (1980) Google Scholar
  40. A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988) Google Scholar
  41. F. Weinhold, C.R. Landis, Chem. Ed.: Res. Pract. Eur. 2, 91 (2001) Google Scholar
  42. T.J. Lee, P.R. Taylor, Int. J. Quant. Chem. Symp. 23, 199 (1989) Google Scholar
  43. T.J. Lee, A.P. Rendell, P.R. Taylor, J. Phys. Chem. 94, 5463 (1990) Google Scholar
  44. J.M.L. Martin, T.J. Lee, G.E. Scuseria, P.R. Taylor, J. Chem. Phys. 97, 6549 (1992) Google Scholar
  45. J.M.L. Martin, Z. Slanina, J.-P. Francois, R. Gijbels, Molec. Phys. 82, 155 (1994) Google Scholar
  46. P. Pyykkö, Chem. Rev. 88, 563 (1988) Google Scholar
  47. N. Bartlett, F.O. Sladky, in Comprehensive Inorganic Chemistry, edited by J.C. Bailar, H.J. Emeléus, R. Nyholm, A.F. Trotman-Dickenson (Pergamon Press, Oxford, 1973) Google Scholar
  48. L. Xinying, C. Xue, Z. Yongfang, J. Phys. B: At. Mol. Opt. Phys. 42, 065102 (2009) Google Scholar
  49. L. Xinying, C. Xue, Z. Yongfang, Aust. J. Chem. 62, 121(2009) Google Scholar
  50. C.E. Moore, Atomic energy levels, National Standard Reference Data Series 35, National Bureau of Standards (US GPO, Washington, DC, 1971) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.School of Physics and Electronics, Henan UniversityKaifengP.R. China
  2. 2.Center for Condensed Matter Science and Technology, Harbin Institute of TechnologyHarbinP.R. China

Personalised recommendations