Advertisement

Non-Bragg bandgaps of quasi-one-dimensional comb-like structures composed of positive and negative index materials

  • L. W. Zhang
  • Y. W. ZhangEmail author
  • L. He
  • Z. G. Wang
Optical Physics
  • 73 Downloads

Abstract

Quasi-one-dimensional comb-like periodic and aperiodic structures composed of positive index materials branch resonators and negative index materials backbone waveguide are physically fabricated by using transmission line approach. It is theoretically shown that the structures possess a non-Bragg band-gap which is invariant with a change of scale length and robust against disorder. The gap edges are determined by zero average permittivity of the branch and the backbone and zero permeability of the backbone materials, respectively. The transmission properties of the structures are investigated by changing the (average) resonator size dBand the resonator spacing dArespectively. The experimental results agree well with the theoretical predictions and numerical simulations, which demonstrate the independence of the special gap on the scaling and disorder in the structures.

PACS

42.70.Qs Photonic bandgap materials 78.20.Ci Optical constants 41.20.Jb Electromagnetic wave propagation; radiowave propagation 

References

  1. H.-Y. Lee, H. Makino, T. Yao, A. Tanaka, Appl. Phys. Lett. 81, 4502 (2002) Google Scholar
  2. J.C. Knight, J. Broeng, T.A. Birks, P.St.J. Russell, Science 282, 1476 (1998) Google Scholar
  3. Y. Akahane, T. Asano, B.S. Song, S. Noda, Nature 425, 944 (2003) Google Scholar
  4. A.A. Asatryan, P.A. Robinson, L.C. Botten, R.C. McPhedran, N.A. Nicorovici, C. Martijn de Sterke, Phys. Rev. E 62, 5711 (2000) Google Scholar
  5. J. Li, L. Zhou, C.T. Chan, P. Sheng, Phys. Rev. Lett. 90, 083901 (2003) Google Scholar
  6. L.W. Zhang, Y.W. Zhang, L. He, Z.G. Wang, H.Q. Li, H. Chen, J. Phys. D: Appl. Phys. 40, 2579 (2007) Google Scholar
  7. L.G. Wang, H. Chen, S.Y. Zhu, Phys. Rev. B 70, 245102 (2004) Google Scholar
  8. H.T. Jiang, H. Chen, H.Q. Li, Y.W. Zhang, J. Zi, S.Y. Zhu, Phys. Rev. E 69, 066607 (2004) Google Scholar
  9. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968) Google Scholar
  10. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001) Google Scholar
  11. C.G. Parazzoli et al., Phys. Rev. Lett. 90, 107401 (2003) Google Scholar
  12. A. Grbic, G.V. Eleftheriades, J. Appl. Phys. 92, 5930 (2002); C. Caloz, T. Ioh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley & Sons, New York, 2006) Google Scholar
  13. J.O. Vasseur, P.A. Deymier, L. Dobrzynski, B. Djafari-Rouhani, A. Akjouj, Phys. Rev. B 55, 10434 (1997) Google Scholar
  14. J.O. Vasseur, B. Djafari-Rouhani, L. Dobrzynski, A. Akjouj, J. Zemmouri, Phys. Rev. B 59, 13446 (1999) Google Scholar
  15. G.H. Cocoletzi, L. Dobrzynski, B. Djafari-Rouhani, H. Al-Wahsh, D. Bria, J. Phys.: Cond. Mat. 18, 3683 (2006) Google Scholar
  16. Y. Weng, Z.G. Wang, H. Chen, Opt. Commun. 277, 80 (2007) Google Scholar
  17. J.O. Vasseur, A. Akjouj, L. Dobrzynski, B. Djafari-Rouhani, E.H. El Boudouti, Surf. Sci. Rep. 54, 1 (2004) Google Scholar
  18. G. Dolling et al., Science 312, 892 (2006); C.M. Soukoulis, S. Linden, M. Wegener, Science 315, 47 (2007) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Pohl Institute of Solid State Physics, Tongji UniversityShanghaiP.R. China
  2. 2.School of Physics and Chemistry, Henan Polytechnic UniversityJiaozuoP.R. China

Personalised recommendations