Advertisement

Radiative lifetimes along even-parity J = 1, 2 Rydberg series of neutral tin

  • W. Zhang
  • S. You
  • C. Sun
  • Y. Zhang
  • J. Xu
  • Z. Ma
  • Y. Feng
  • H. Liu
  • P. Quinet
  • É. Biémont
  • Z. DaiEmail author
Atomic Physics

Abstract

Using the time-resolved laser-induced fluorescence (LIF) technique in a tin atomic beam, 40 natural radiative lifetimes have been measured for the even-parity \(J = 1~5\) pnp (n = 10–13, 15–19) and \(J = 2~5\) pnp (n = 10–13, 15–19, 27, 31, 32), 5pnf (n = 4, 5, 9–19, 22, 23) levels along the Rydberg series and for all the 5p8p perturbing levels of neutral tin with energies in the range 52263.8 to 59099.9 cm-1. A two-step laser excitation scheme was used in the experiment. A multiconfigurational relativistic Hartree-Fock (HFR) calculation taking core-polarization effects into account has also been performed for the even-parity states for testing the ability of this approach to correctly predict the radiative properties of tin atom. Through an analysis of the energy levels structure by the multichannel quantum defect theory (MQDT), the channel admixture coefficients have been obtained and used to fit the theoretical lifetimes to the experimental ones in order to predict new values for the levels not measured. A generally good overall agreement between experimental and theoretical MQDT and HFR lifetimes has been achieved except for a few levels.

PACS

32.70.Cs Oscillator strengths, lifetimes, transition moments 42.62.Fi Laser spectroscopy 31.15.-p Calculations and mathematical techniques in atomic and molecular physics 

References

  1. U.J. Sofia, D.M. Meyer, J.A. Cardelli, Astrophys. J. 522, L137 (1999) Google Scholar
  2. S. Adelman, W.P. Bidelman, D. Pyper, Astrophys. J. Suppl. 40, 371 (1979) Google Scholar
  3. M. Asplund, N. Grevesse, A.J. Sauval, ASP Conference Series, edited by F.N. Bash, T.G. Barnes (ASP, San Francisco, 2005), Vol. 336, p. 25 Google Scholar
  4. M. Saffman, T.G. Walker, Phys. Rev. A 72, 022347 (2005) Google Scholar
  5. M.D. Lukin, M. Fleischhauer, R. Cote, L.M. Duan, D. Jaksch, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 87, 037901 (2001) Google Scholar
  6. J.N. Pennington, Mod. Met. 55, 38 (1999) Google Scholar
  7. C.M. Brown, S.G. Tilford, M.L. Ginter, J. Opt. Soc. Am. 67, 607 (1977) Google Scholar
  8. C.E. Moore, Atomic Energy Levels, Vol. III, Circ. of Natl. Bur. Std. (US), No. 467 (US Government Printing Office, Washington, 1958) Google Scholar
  9. A. Nadeem, A. Ahad, S.A. Bhatti, N. Ahmad, R. Ali, M.A. Baig, J. Phys. B 32, 5669 (1999) Google Scholar
  10. A. Nadeem, S.A. Bhatti, N. Ahmad, M.A. Baig, J. Phys. B 34, 2407 (2001) Google Scholar
  11. M. Jin, D. Ding, H. Liu, S. Pan, Inst. Phys. Conf. Ser. 114, 235 (1990) Google Scholar
  12. J. Dembczynski, H. Rebel, Physica B & C 125, 341 (1984); J. Dembczynski, M. Wilson, Z. Phys. D 8, 329 (1988) Google Scholar
  13. N.P. Penkin, I.Yu.Yu. Slavenas, Opt. Spectrosc. 15, 83 (1963) Google Scholar
  14. G.M. Lawrence, Astrophys. J. 148, 216 (1967) Google Scholar
  15. M. Brieger, P. Zimmermann, Z. Naturforsch. A 22, 2001 (1967) Google Scholar
  16. R.L. de Zafra, A. Marshall, Phys. Rev. 170, 28 (1968) Google Scholar
  17. L. Holmgren, S. Svanberg, Phys. Scr. 5, 135 (1972) Google Scholar
  18. V.N. Gorshkov, Y.F. Verolainen, Opt. Spectrosc. 59, 694 (1985) Google Scholar
  19. D.W. Duquette, J.E. Lawler, Phys. Rev. A 26, 330 (1982) Google Scholar
  20. J. Xu, S. You, Y. Zhang, W. Zhang, Z. Ma, Y. Feng, Y. Xing, X. Deng, P. Quinet, É. Biémont, Z. Dai, J. Phys. B 42, 035001 (2009) Google Scholar
  21. M. Gustavsson, H. Lundberg, L. Nilsson, S. Svanberg, J. Opt. Soc. Am. 69, 984 (1979) Google Scholar
  22. T.F. Gallagher, W.E. Cooke, Phys. Rev. Lett. 42, 835 (1979) Google Scholar
  23. C.E. Theodosiou, Phys. Rev. A 30, 2881 (1984) Google Scholar
  24. J.W. Farley, W.H. Wing, Phys. Rev. A 23, 2397 (1981) Google Scholar
  25. K. Bhatia, P. Grafström, C. Levinson, H. Lundberg, L. Nilsson, S. Svanberg, Z. Phys. A 303, 1 (1981) Google Scholar
  26. R.D. Cowan, The Theory of Atomic Structure and Spectra (Univ. of California Press, Berkeley, 1981) Google Scholar
  27. P. Quinet, P. Palmeri, É. Biémont, M.M. McCurdy, G. Rieger, E.H. Pinnington, M.E. Wickliffe, J.E. Lawler, Mon. Not. Roy. Astron. Soc. 307, 934 (1999) Google Scholar
  28. É. Biémont, P. Quinet, Phys. Scr. T 105, 38 (2003) Google Scholar
  29. Y. Zhang, J. Xu, W. Zhang, S. You, Z. Ma, L. Han, P. Li, G. Sun, Z. Jiang, S. Enzonga Yoca, P. Quinet, É. Biémont, Z. Dai, Phys. Rev. A 78, 022505 (2008) Google Scholar
  30. M.J. Seaton, Proc. Phys. Soc. 88, 801 (1966) Google Scholar
  31. U. Fano, J. Opt. Soc. Am. 65, 979 (1975) Google Scholar
  32. J.A. Armstrong, P. Esherick, J.J. Wynne, Phys. Rev. A 15, 180 (1977) Google Scholar
  33. M. Aymar, A. Debarre, O. Robaux, J. Phys. B 13, 1089 (1980) Google Scholar
  34. S. Hasegawa, A. Suzuki, Phys. Rev. A 53, 3014 (1996) Google Scholar
  35. Z. Dai, Z.S. Li, J. Zhankui, Phys. Rev. A 65, 022510 (2002) Google Scholar
  36. M. Aymar, P. Grafström, C. Levinson, H. Lundberg, S. Svanberg, J. Phys. B 15, 877 (1982) Google Scholar
  37. W.P. Spencer, A.G. Vaidyanathan, D. Kleppner, T.W. Ducas, Phys. Rev. A 24, 2513 (1981) Google Scholar
  38. A. Nadeem, S.A. Bhatti, N. Ahmad, M.A. Baig, J. Phys. B 33, 3729 (2000) Google Scholar
  39. M. Jin, Ph.D. thesis, Jilin University, 1991 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • W. Zhang
    • 1
  • S. You
    • 1
  • C. Sun
    • 1
  • Y. Zhang
    • 1
  • J. Xu
    • 1
  • Z. Ma
    • 1
  • Y. Feng
    • 1
  • H. Liu
    • 1
  • P. Quinet
    • 2
    • 3
  • É. Biémont
    • 2
    • 3
  • Z. Dai
    • 1
    Email author
  1. 1.Department of PhysicsJilin University and Key Lab of Coherent Light, Atomic and Molecular Spectroscopy, Ministry of EducationChangchunP.R. China
  2. 2.IPNAS (Bât. B15), Université de LiègeLiègeBelgium
  3. 3.Astrophysique et Spectroscopie, Université de Mons-HainautMonsBelgium

Personalised recommendations