A DFT study on small M-doped titanium (M = V, Fe, Ni) clusters: structures, chemical bonds and magnetic properties

  • J. G. Du
  • X. Y. Sun
  • G. JiangEmail author
Clusters and Nanostructures


The equilibrium structures, electronic properties of bimetallic Ti1-4M (M=V, Fe, Ni) clusters are investigated by using the density functional method within generalized gradient approximation in conjunction with the valence basis set. Considering the spin multiplicity effect, the geometries with different spins are optimized to find the ground states. For the ground states, the natural bonding orbital analysis (NBO) is performed and shows that the 4s electrons always transfer to the 3d orbital in the bonding atoms so that 4s and 3d orbitals hybridize with each other. The electron transfers from Ti atoms to the ‘impurity’ atoms (V, Fe, and Ni) are also found. The two kinds of electron transfer mechanisms are considered to be the contributor for the stabilities of the studied clusters. The Wiberg bond order and AIM (atoms in molecules) analyses indicate that the relative stabilities of chemical bonds are: \(\text{Ti-V/Ti-Fe} > \text{Ti-Ti} > \text{Ti-Ni}\). The spin magnetic moments are found to be mostly located at Ti atoms. Several clusters like Ti2V, Ti3V, Ti3Ni and Ti4Ni present the high moments.


36.40.Cg Electronic and magnetic properties of clusters 36.40.Qv Stability and fragmentation of clusters 31.10.+z Theory of electronic structure, electronic transitions, and chemical binding 


  1. M. Doverstål, L. Karlsson, B. Lindgren, U. Sassenberg, Chem. Phys. Lett. 270, 273 (1997) Google Scholar
  2. C. Cossé et al., J. Chem. Phys. 73, 6076 (1980) Google Scholar
  3. A. Kant, S.S. Lin, J. Chem. Phys. 51, 1644 (1969) Google Scholar
  4. M. Sakurai, K.J. Watanabe, K.J. Sumiyama, K.J. Suzuki, J. Chem. Phys. 111, 235 (1999) Google Scholar
  5. S.H. Wei, Z. Zeng, J.Q. You, X.H. Yan, X.G. Gong, J. Chem. Phys. 113, 11127 (2000) Google Scholar
  6. M. Castro, S.R. Liu, H.J. Zhai, L.S. Wang, J. Chem. Phys. 118, 2116 (2003) Google Scholar
  7. J.J. Zhao, Q. Qiu, B.L. Wang, J.L. Wang, G.H. Wang, Solid State Commun. 118, 157 (2001) Google Scholar
  8. R.J. van Zee, W. Weltner, Chem. Phys. Lett. 107, 173 (1984) Google Scholar
  9. J. Xiang, S.H. Wei, X.H. Yan, J.Q. You, Y.L. Mao, J. Chem. Phys. 120, 4251 (2004) Google Scholar
  10. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision B 02, Gaussian (Inc., Pittsburgh PA, 2003) Google Scholar
  11. A.D. Becke, Phys. Rev. A 38, 3098 (1988) Google Scholar
  12. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) Google Scholar
  13. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997) Google Scholar
  14. W.J. Stevens, H. Basch, M. Krauss, J. Chem. Phys. 81, 6026 (1984) Google Scholar
  15. W.J. Stevens, M. Krauss, H. Basch, P.G. Jasien, Can. J. Chem. 70, 612 (1992) Google Scholar
  16. T.R. Cundari, W.J. Stevens, J. Chem. Phys. 98, 5555 (1993) Google Scholar
  17. J.G. Du, H.Y. Wang, G. Jiang, J. Mol. Struc. Theochem 817, 47 (2007) Google Scholar
  18. J.R. Lombardi, B. Davis, Chem. Rev. 102, 2431 (2002) Google Scholar
  19. M.D. Morse, Chem. Rev. 86, 1049 (1986) Google Scholar
  20. J.E. Carpenter, F. Weinhold, J. Mol. Struct. Theochem 169, 41 (1988) Google Scholar
  21. J.E. Carpenter, Ph.D. thesis (University of Wisconsin, Madison, WI, 1987) Google Scholar
  22. J.P. Foster, F. Weinhold, J. Am. Chem. Soc. 102, 7211 (1980) Google Scholar
  23. A.E. Reed, F. Weinhold, J. Chem. Phys. 78, 4066(1983) Google Scholar
  24. A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 735 (1985) Google Scholar
  25. A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988) Google Scholar
  26. K.B. Wiberg, Tetrahedron 24, 1083 (1968) Google Scholar
  27. G.A. Petersson, M.A. Al-Laham, J. Chem. Phys. 94, 6081 (1991) Google Scholar
  28. AIMAll (version 08.05.04), T.A. Keith, 2008 ( Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute of atomic and molecular physics, Sichuan UniversityChengduP.R. China

Personalised recommendations