Advertisement

The European Physical Journal D

, Volume 55, Issue 2, pp 379–389 | Cite as

Signatures of the Unruh effect via high-power, short-pulse lasers

  • P. G. ThirolfEmail author
  • D. Habs
  • A. Henig
  • D. Jung
  • D. Kiefer
  • C. Lang
  • J. Schreiber
  • C. Maia
  • G. Schaller
  • R. Schützhold
  • T. Tajima
Topical issue: Fundamental Physics and Ultra-High Laser Fields

Abstract

The ultra-high fields of high-power short-pulse lasers are expected to contribute to understanding fundamental properties of the quantum vacuum and quantum theory in very strong fields. For example, the neutral QED vacuum breaks down at the Schwinger field strength of 1.3×1018 V/m, where a virtual e+e- pair gains its rest mass energy over a Compton wavelength and materializes as a real pair. At such an ultra-high field strength, an electron experiences an acceleration of aS=2×1028g and hence fundamental phenomena such as the long predicted Unruh effect start to play a role. The Unruh effect implies that the accelerated electron experiences the vacuum as a thermal bath with the Unruh temperature. In its accelerated frame the electron scatters photons off the thermal bath, corresponding to the emission of an entangled pair of photons in the laboratory frame. While it remains an experimental challenge to reach the critical Schwinger field strength within the immediate future even in view of the enormous thrust in high-power laser developments in recent years, the near-future laser technology may allow to probe the signatures of the Unruh effect mentioned above. Using a laser-accelerated electron beam (γ∼300) and a counter-propagating laser beam acting as optical undulator should allow to create entangled Unruh photon pairs (i.e., signatures of the Unruh effect) with energies of the order of several hundred keV. An even substantially improved experimental scenario can be realized by using a brilliant 20 keV photon beam as X-ray undulator together with a low-energy (γ≈2) electron beam. In this case the separation of the Unruh photon pairs from background originating from linearly accelerated electrons (classical Larmor radiation) is significantly improved. Detection of the Unruh photons may be envisaged by Compton polarimetry in a 2D-segmented position-sensitive germanium detector.

PACS

04.62.+v Quantum fields in curved spacetime 12.20.Fv Experimental tests 41.60.-m Radiation by moving charges 42.50.Dv Quantum state engineering and measurements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Sauter, Z. Phys. 69, 742 (1931); F. Sauter, Z. Phys. 73, 547 (1931); W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936); V. Weisskopf, Kong. Dans. Vid. Selsk., Mat.-fys. Medd. XIV, 6 (1936); J. Schwinger, Phys. Rev. 82, 664 (1951)zbMATHCrossRefADSGoogle Scholar
  2. 2.
    R. Schützhold, H. Gies, G. Dunne, Phys. Rev. Lett. 101, 130404 (2008)CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    W.G. Unruh, Phys. Rev. D 14, 870 (1976)CrossRefADSGoogle Scholar
  4. 4.
    S.W. Hawking, Commun. Math. Phys. 43, 194 (1975)CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    R. Schützhold, G. Schaller, D. Habs, Phys. Rev. Lett. 97, 121302 (2006)CrossRefADSGoogle Scholar
  6. 6.
    R. Schützhold, G. Schaller, D. Habs, Phys. Rev. Lett. 100, 091301 (2008)CrossRefADSGoogle Scholar
  7. 7.
    W.G. Unruh, R.M. Wald, Phys. Rev. D 29, 1047 (1984)CrossRefADSGoogle Scholar
  8. 8.
    A. Higuchi, G.E.A. Matsas, D. Sudarsky, Phys. Rev. D 45, R3308 (1992)CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, Rev. Mod. Phys. 80, 787 (2008)CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    R. Schützhold, C. Maia, Eur. Phys. J. D 55, 375 (2009)CrossRefGoogle Scholar
  11. 11.
    J.S. Bell, J.M. Leinaas, Nucl. Phys. B 284, 488 (1987)CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    W.G. Unruh, Phys. Rep. 307, 163 (1998)CrossRefADSGoogle Scholar
  13. 13.
    I. Freund, B.F. Levine, Phys. Rev. Lett. 23, 854 (1969)CrossRefADSGoogle Scholar
  14. 14.
    P. Eisenberger, S.L. McCall, Phys. Rev. Lett. 26, 684 (1971)CrossRefADSGoogle Scholar
  15. 15.
    Y. Yoda et al., J. Synchrotron Radiat. 5, 980 (1998)CrossRefGoogle Scholar
  16. 16.
    B. Adams et al., J. Synchrotron Radiat. 7, 81 (2000)CrossRefADSGoogle Scholar
  17. 17.
    P. Chen, T. Tajima, Phys. Rev. Lett. 83, 256 (1999)CrossRefADSGoogle Scholar
  18. 18.
  19. 19.
    S.P.D. Mangles et al., Nature 431, 535 (2004)CrossRefADSGoogle Scholar
  20. 20.
    C.G.R. Geddes et al., Nature 431, 538 (2004)CrossRefADSGoogle Scholar
  21. 21.
    J. Faure et al., Nature 431, 541 (2004)CrossRefADSGoogle Scholar
  22. 22.
    W.P. Leemans et al., Nature Phys. 2, 696 (2006)CrossRefADSGoogle Scholar
  23. 23.
    S. Karsch et al., New J. Phys. 9, 415 (2007)CrossRefADSGoogle Scholar
  24. 24.
    Zs. Major et al., accepted for publication in: The Review of Laser Engineering (Journal of the Laser Society of Japan) (2009)Google Scholar
  25. 25.
    S. Gordienko et al., Phys. Rev. Lett. 94, 103903 (2005)CrossRefADSGoogle Scholar
  26. 26.
    P. Jacobs et al., Prog. Part. Nucl. Phys. 54, 443 (2005)CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    C.G.R. Geddes et al., Phys. Rev. Lett. 100, 215004 (2008)CrossRefADSGoogle Scholar
  28. 28.
    S. Tashenov, Ph.D. thesis, Univ. Frankfurt, 2005, unpublishedGoogle Scholar
  29. 29.
    A. Ferguson, Nucl. Instrum. Meth. 162, 565 (1979)CrossRefADSGoogle Scholar
  30. 30.
    R. Kroeger et al., Nucl. Instrum. Meth. A 436, 165 (1999)CrossRefADSGoogle Scholar
  31. 31.
    T. Stöhlker et al., J. Phys. 58, 411 (2007)Google Scholar
  32. 32.
    J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), p. 682zbMATHGoogle Scholar
  33. 33.
    D. Habs et al., Appl. Phys. B 93, 349 (2008)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • P. G. Thirolf
    • 1
    Email author
  • D. Habs
    • 1
    • 2
  • A. Henig
    • 1
  • D. Jung
    • 1
  • D. Kiefer
    • 1
  • C. Lang
    • 1
  • J. Schreiber
    • 1
    • 3
  • C. Maia
    • 4
  • G. Schaller
    • 5
  • R. Schützhold
    • 4
  • T. Tajima
    • 1
  1. 1.Faculty of Physics, Ludwig-Maximilians-University MünchenGarchingGermany
  2. 2.Max-Planck Institute of Quantum OpticsGarchingGermany
  3. 3.Imperial CollegeLondonUK
  4. 4.Fachbereich Physik, University of Duisburg-EssenDuisburgGermany
  5. 5.Institut für Theoretische Physik, TU BerlinBerlinGermany

Personalised recommendations