Advertisement

The European Physical Journal D

, Volume 53, Issue 3, pp 365–372 | Cite as

Random unitary qubit channels: entropy relations,private quantum channels and non-malleability

  • J. Bouda
  • M. KoniorczykEmail author
  • A. Varga
Quantum Optics and Quantum Information

Abstract

Channels encrypting quantum bits by the application of randomly chosen unitary operators are studied. Quantities based on averages of linear entropies which characterize certain aspects of the encoding quality and the non-malleability of the channels are introduced. The relation between the entropy of the classical key and the choice of the encryption operators with the behaviour of these properties is discussed. The extension of exact private quantum channels in order to improve non-malleability via additional encryption operators is considered.

PACS

03.67.-a Quantum information 03.67.Dd Quantum cryptography and communication security 03.67.Hk Quantum communication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Shannon, Bell Systems Technical Journal 28, 656 (1949) Google Scholar
  2. A. Ambainis, M. Mosca, A. Tapp, R. de Wolf, in 41st Symp. on Foundations of Computer Science (FOCS 2000), Redondo Beach, CA (IEEE Computer Society, 2000), pp. 547–553 Google Scholar
  3. P. Boykin, V. Roychowdhury, Phys. Rev. A 67 (2003) Google Scholar
  4. H. Barnum, C. Crepeau, D. Gottesman, A. Smith, in Proceedings of the 43rd Annual Symposium on Foundations of Computer Science (IEEE Press, 2002), pp. 449–458 Google Scholar
  5. D. Dolev, C. Dwork, M. Naor, SIAM J. Comput. 30, 391 (2000) Google Scholar
  6. G.S. Vernam, J. IEEE 55, 109 (1926) Google Scholar
  7. R. Jain (2005), e-print arxiv: quant-ph/0507075 Google Scholar
  8. A. Nayak, P. Sen, Quantum Inform. Comput. 7, 103 (2007) Google Scholar
  9. J. Bouda, M. Ziman (2005), e-print arxiv: quant-ph/0506107 Google Scholar
  10. P. Hayden, D. Leung, P. Shor, A. Winter, Commun. Math. Phys. 250, 371 (2004) Google Scholar
  11. A. Ambainis, J. Bouda, A. Winter (2008), e-print arxiv: quant-ph/0808.0353v2 Google Scholar
  12. M. Koniorczyk, T. Kiss, J. Janszky, J. Phys. A 34, 6949 (2001) Google Scholar
  13. K. Zyczkowski, Open Syst. Inf. Dyn. 10, 297 (2003) Google Scholar
  14. J. Bouda, M. Ziman, J. Phys. A 40, 5415 (2007) Google Scholar
  15. G. Lepage, J. Comput. Phys. 27, 192 (1978) Google Scholar
  16. W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes in C, 2nd edn. (Cambridge University Press, Cambridge, UK, 1992) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Faculty of Informatics, Masaryk UniversityBrnoCzech Republic
  2. 2.Institute of Physics, University of PécsPécsHungary
  3. 3.Research Institute for Solid State Physics and Optics, Hungarian Academy of SciencesBudapestHungary

Personalised recommendations