Advertisement

The European Physical Journal D

, Volume 54, Issue 2, pp 305–311 | Cite as

Computational study of impulsively generated standing slow acoustic waves in a solar coronal loop

  • P. JelínekEmail author
  • M. Karlický
Topical issue: 23rd Symposium on Plasma Physics and Technology

Abstract

We numerically investigated standing slow acoustic waves impulsively excited in a solar coronal loop by gas pressure and mass density perturbations in one-dimensional space. The corresponding computer model is described by the hydrodynamic equations that are solved numerically by means of the so-called flux limiters methods on uniformly structured mesh. We discuss the fundamental mode and the first harmonic mode which are generated in dependence on position of the initial perturbation in the numerical box. We show how the standing slow acoustic waves are generated in the corona, where they are trapped in space between two dense layers as in the resonator, and how their energy leaks from the corona to the dense layers. We found that this leakage increases with the decrease of the density jump at the transition region. We also studied the case when the perturbation is initiated at the transition region. We found that even in this case the standing wave is formed, but their energetics is influenced by the evaporation of the plasma from the transition region into the corona.

PACS

95.30.Lz Hydrodynamics 94.20.wf Plasma waves and instabilities 96.60.pf Coronal loops, streamers 52.65.-y Plasma simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aschwanden, Physics of the Solar Corona (Springer, Praxis Publ., Chichester, UK, 2004) Google Scholar
  2. I. De Moortel, J. Ireland, R.W. Walsh, A.W. Hood, Sol. Phys. 209, 61 (2002) Google Scholar
  3. L. Ofman, T. Wang, Astrophys. J. 580, L85 (2002) Google Scholar
  4. M.J. Aschwanden, L. Fletcher, C.J. Schrijver, D. Alexander, Astrophys. J. 520, 880 (1999) Google Scholar
  5. V.M. Nakariakov, L. Ofman, E.E. Deluca, B. Roberts, J.M. Davila, Science 285, 862 (1999) Google Scholar
  6. T.J. Wang, S.K. Solanki, Astron. Astrophys. 421, L33 (2004) Google Scholar
  7. D.J. Pascoe, V.M. Nakariakov, T.D. Arber, Astron. Astrophys. 461, 1149 (2007) Google Scholar
  8. L. Ofman, Astrophys. J. 568, L135 (2002) Google Scholar
  9. T. Van Doorsselaere, A. Debosscher, J. Andries, S. Poedts, Astron. Astrophys. 424, 1065 (2004) Google Scholar
  10. M. Selwa, K. Murawski, Astron. Astrophys. 425, 719 (2004) Google Scholar
  11. B. Kliem, M. Karlický, A.O. Benz, Astron. Astrophys. 360, 715 (2000) Google Scholar
  12. M. Selwa, L. Ofman, K. Murawski, Astrophys. J. 668, L83 (2007) Google Scholar
  13. K. Murawski, M. Selwa, L. Nocera, Astron. Astrophys. 437, 687 (2005) Google Scholar
  14. M. Selwa, K. Murawski, S.K. Solanki, Astron. Astrophys. 436, 701 (2005) Google Scholar
  15. J. Terradas, R. Oliver, J.L. Ballester, R. Keppens, Astrophys. J. 675, 875 (2008) Google Scholar
  16. R. Ogrodowczyk, K. Murawski, Astron. Astrophys. 467, 311 (2007) Google Scholar
  17. L.J. Porter, J.A. Klimchuk, P.A. Sturrock, Astrophys. J. 435, 482 (1994) Google Scholar
  18. G.B. Laing, P.M. Edwin, Sol. Phys. 161, 269 (1995) Google Scholar
  19. T.J. Chung, Computational Fluid Dynamics (Cambridge University Press, New York, USA, 2002) Google Scholar
  20. K. Sankaran, L. Martinelli, S.C. Jardin, E.Y. Choueiri, Int. J. Numer. Meth. Eng. 53, 1415 (2002) Google Scholar
  21. E.R. Priest, Solar Magnetohydrodynamics (D. Reidel Publishing Company, London, England, 1982) Google Scholar
  22. M. Karlický, Sol. Phys. 130, 347 (1990) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.University of South Bohemia, Faculty of ScienceČeské BudějoviceCzech Republic
  2. 2.Astronomical Institute, Academy of Sciences of the Czech RepublicOndřejovCzech Republic

Personalised recommendations