Advertisement

The European Physical Journal D

, Volume 54, Issue 2, pp 399–407 | Cite as

Simulations of anomalous ion diffusion in experimentally measured turbulent potential

  • J. SeidlEmail author
  • L. Krlín
  • R. Pánek
  • P. Pavlo
  • J. Stöckel
  • V. Svoboda
Topical issue: 23rd Symposium on Plasma Physics and Technology

Abstract

The diffusion of plasma impurities in tokamak-edge-plasma turbulence is investigated numerically. The time-dependent potential governing particle motion was measured by 2D array of 8×8 Langmuir probes in edge region of CASTOR tokamak. The diffusion of particles is found to be classical in the radial direction, but it can be of an anomalous Lévy-walk type in the poloidal direction. The diffusion is found to be dependent on the ratio of particles’ mass and charge. When this ratio grows, the diffusion coefficient in radial direction grows as well, whereas poloidal diffusion coefficient drops down. Moreover, movement of particles in the time-frozen snapshot of this potential is investigated showing that also the time-independent potential is much more favorable for the particle diffusion in poloidal direction than in radial one. In the case of single ionized carbon ions the poloidal diffusion in time-independent potential transits to the Lévy-walk type for temperatures greater than 25 eV, for radial diffusion Lévy-walk was not observed even for 500 eV.

PACS

52.25.Fi Transport properties 52.25.Vy Impurities in plasmas 52.65.Cc Particle orbit and trajectory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Horton, Plasma Phys. Control. Fusion 27, 937 (1985) Google Scholar
  2. M. Endler et al., Nucl. Fusion 35, 1307 (1995) Google Scholar
  3. S.J. Zweben et al., Nucl. Fusion 44, 134 (2004) Google Scholar
  4. J.L. Terry et al., Nucl. Fusion 45, 1321 (2005) Google Scholar
  5. E. Martines, M. Hron, J. Stöckel, Plasma Phys. Control. Fusion 44, 351 (2002) Google Scholar
  6. O.E. Garcia et al., Nucl. Fusion 47, 667 (2007) Google Scholar
  7. G. Manfredi, R.O. Dendy, Phys. Rev. Lett. 76, 4360 (1996) Google Scholar
  8. G. Manfredi, R.O. Dendy, Phys. Plasmas 4, 628 (1997) Google Scholar
  9. S.V. Anibaldi, G. Manfredi, R.O. Dendy, Phys. Plasmas 9, 791 (2002) Google Scholar
  10. A. Hasegawa, K. Mima, Phys. Fluids 21, 87 (1978) Google Scholar
  11. V. Naulin, A.H. Nielsen, J.J. Rasmussen, Phys. Plasmas 6, 4575 (1999) Google Scholar
  12. R. Basu et al., Phys. Plasmas 10, 2696 (2003) Google Scholar
  13. A. Hasegawa, M. Wakatani, Phys. Rev. Lett. 50, 682 (1983) Google Scholar
  14. L. Krlín et al., Plasma Phys. Control. Fusion 41, 339 (1999) Google Scholar
  15. L. Krlín et al., Phys. Scr. T 84, 221 (2000) Google Scholar
  16. R. Pánek et al., Contrib. Plasma Phys. 44, 203 (2004) Google Scholar
  17. R. Pánek et al., Phys. Scr. 72, 327 (2005) Google Scholar
  18. P.M. Bellan, Plasma Phys. Control. Fusion 35, 163 (1993) Google Scholar
  19. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943) Google Scholar
  20. L. Krlín, R. Paprok, L. Svoboda, Eur. Phys. J. D 48, 95 (2008) Google Scholar
  21. M.F. Shlesinger, Nature 363, 31 (1993) Google Scholar
  22. J. Stöckel et al., J. Phys.: Conf. Ser. 63, 012001 (2007) Google Scholar
  23. O.E. Garcia et al., Phys. Plasmas 12, 062309 (2005) Google Scholar
  24. J. Brotánková et al., Czech. J. Phys. 56, 1321 (2006) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • J. Seidl
    • 1
    Email author
  • L. Krlín
    • 2
  • R. Pánek
    • 2
  • P. Pavlo
    • 2
  • J. Stöckel
    • 2
  • V. Svoboda
    • 3
  1. 1.Faculty of Mathematics and Physics, Charles University in PraguePragueCzech Republic
  2. 2.Institute of Plasma Physics AS CRPragueCzech Republic
  3. 3.Faculty of Nuclear Engineering, Czech Technical UniversityPragueCzech Republic

Personalised recommendations