The European Physical Journal D

, Volume 54, Issue 2, pp 417–423 | Cite as

Computational study of plasma-surface interaction in plasma-assisted technologies

  • R. HrachEmail author
  • P. Bartoš
  • V. Hrachová
Topical issue: 23rd Symposium on Plasma Physics and Technology


The influence of the unevenness of substrates immersed into plasma important for plasma-based treatment of materials were studied by computer experiment. The role of both substrate properties and plasma parameters was investigated. For this analysis the combination of multidimensional fluid modelling and particle simulation was used. The fluid part of our model consisted of continuity equations for all charged species, energy balance equation for electrons and Poisson equation. The basic scattering processes were also included. The particle simulation technique was used both for the calculation of electron energy distribution function and for the derivation of quantities characterising plasma-surface interaction. This approach enabled us to study in detail the structure of the sheath and presheath near metal substrates with realistic geometries and finite dimensions. The main attention was devoted to the influence of substrate geometry in both macroscopic and microscopic spatial scales on the local electric fields in plasma.


52.40.Hf Plasma-material interactions;boundary layer effects 52.65.-y Plasma simulation 52.65.Ww Hybrid methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L.M. Montierth, W.A. Neuman, R.L. Morse, Phys. Fluids B 4, 784 (1992) Google Scholar
  2. J. Riemann, M. Borchardt, R. Schneider, A. Mutzke, T.D. Rognlien, M. Umansky, Contrib. Plasma Phys. 44, 35 (2004) Google Scholar
  3. D. Trunec, P. Španěl, D. Smith, Contrib. Plasma Phys. 42, 91 (2002) Google Scholar
  4. R. Hrach, V. Hrachová, M. Vicher, Comput. Phys. Commun. 147, 505 (2002) Google Scholar
  5. A. Cenian, A. Chernukho, A. Bogaerts, R. Gijbels, C. Leys, J. Appl. Phys. 97, 123310 (2005) Google Scholar
  6. H.C. Kim, F. Iza, S.S. Yang, M. Radmilovic-Radjenovic, J.K. Lee, J. Phys. D: Appl. Phys. 38, R283 (2005) Google Scholar
  7. A. Bogaerts, R. Gijbels, Plasma Sources Sci. Technol. 11, 27 (2002) Google Scholar
  8. A. Bogaerts, R. Gijbels, W. Goedheer, Jpn J. Appl. Phys. 38, 4404 (1999) Google Scholar
  9. K. Charrada, G. Zissis, M. Aubes, J. Phys. D: Appl. Phys. 29, 2432 (1996) Google Scholar
  10. G. Chen, L.L. Raja, J. Appl. Phys. 96, 6073 (2004) Google Scholar
  11. E. Wagenaars, R. Brandenburg, W.J.M. Brok, M.D. Bowden, H.E. Wagner, J. Phys. D: Appl. Phys. 39, 700 (2006) Google Scholar
  12. P. Bartoš, R. Hrach, P. Jelínek, Vacuum 82, 220 (2008) Google Scholar
  13. M. Mitchner, C.H. Kruger, Partially Ionized Gases (Wiley, New York, 1973) Google Scholar
  14. R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (Taylor and Francis, New York, 1988). Google Scholar
  15. V. Hrachová, A.-M. Diamy, O. Kylián, A. Kaňka, J.-C. Legrand, in Advances in Plasma Physics Research, Vol. II (NOVA, Science Publishers Inc., New York, 2003) Google Scholar
  16. J.P. Boeuf, L.C. Pitchford, Phys. Rev. E 51, 1376 (1995) Google Scholar
  17. B. Briehl, H.M. Urbassek, J. Appl. Phys. 93, 4420 (2003) Google Scholar
  18. O. Demokan, Y. Filiz, J. Appl. Phys. 93, 83 (2003) Google Scholar
  19. E.V. Barnat, G.A. Hebner, J. Appl. Phys. 97, 063301 (2005) Google Scholar
  20. Y.T. Pei, S.P. Shaha, C.Q. Chen, R. van der Hulst, A.A. Turkin, J.Th.M. De Hosses, Proc. 14th Intern. Conf. on Thin Films ICTF 14, Ghent, Belgium, 71 (2008) Google Scholar
  21. R. Hrach, D. Sedlák, M. Vicher, J. Šimek, Thin Solid Films 459, 137 (2004) Google Scholar
  22. Z. Pekárek, R. Hrach, Vacuum 82, 244 (2008) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Surface and Plasma ScienceCharles University, Faculty of Mathematics and PhysicsPrague 8Czech Republic

Personalised recommendations