Advertisement

The European Physical Journal D

, Volume 53, Issue 1, pp 15–19 | Cite as

Blackbody radiation shift of the Al+ clock transition

  • J. MitroyEmail author
  • J. Y. Zhang
  • M. W. J. Bromley
  • K. G. Rollin
Atomic Physics

Abstract

The blackbody radiation shift of the Al+ 3s2 1Se 0 ↦ 3s3p 3P 0 clock transition is evaluated. The polarizabilities of the two states are determined by means of configuration interaction calculations in conjunction with oscillator strength sum rules. The ground state polarizability was 24.14 ±0.12 a.u. while the metastable state polarizability was 24.62 ±0.25 a.u. The derived frequency shift at 300 K was Δν= -0.0042 ±0.0032 Hz. Some auxiliary sum rules are evaluated that allow for the conversion of a finite frequency polarizability difference to a static polarizability difference.

PACS

31.15.ap Polarizabilities and other atomic and molecular properties 31.15.ag Excitation energies and lifetimes; oscillator strengths 31.15.V- Electron correlation calculations for atoms, ions and molecules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.A. Diddams, T. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W.M. Itano, W.D. Lee, C.W. Oates, K.R. Vogel, D.J. Wineland, Science 293, 825 (2001)Google Scholar
  2. P. Gill, G.P. Barwood, H.A. Klein, G. Huang, S.A. Webster, P.J. Blythe, K. Hosaka, S.N. Lea, H.S. Margolis, Meas. Sci. Technol. 14, 1174 (2003)Google Scholar
  3. T. Rosenband, P.O Schmidt, D.B. Hume, W.M. Itano, T.M. Fortier, J.E. Stalnaker, K. Kim, S.A. Diddams, J.C.J. Koelemeij, J.C. Bergquist, D.J. Wineland, Phys. Rev. Lett. 98, 220801 (2007)Google Scholar
  4. T. Rosenband, C.W. Hume, D.B. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Science 319, 1808 (2008)Google Scholar
  5. Th. Udem, R. Holzwarth, T.W. Hansch, Nature 416, 233 (2002)Google Scholar
  6. A. Bauch, Meas. Sci. Technol. 14, 1159 (2003)Google Scholar
  7. H.S. Margolis, G. Huang, G.P. Barwood, S.N. Lea, H.A. Klein, W.R.C. Rowley, P. Gill, R.S. Windeler, Phys. Rev. A 67, 032501 (2003)Google Scholar
  8. V.G. Pal’chikov, Yu.S. Domnin, A.V. Novoselev, J. Opt. B: Quantum Semiclass. Opt. 5, S131 (2003)Google Scholar
  9. S.G. Porsev, A. Derevianko, Phys. Rev. A 74, 020502(R) (2006)Google Scholar
  10. T. Zelevinsky, M.M. Boyd, A.D. Ludlow, S.M. Foreman, S. Blatt, T. Ido, J. Ye, Hyperf. Interact. 174, 55 (2007)Google Scholar
  11. W.M. Itano, J.C. Bergquist, A. Brusch, S.A. Diddams, T.M. Fortier, T.P. Heavner, L. Hollberg, D.B. Hume, S.R. Jefferts, L. Lorini, T.E. Parker, T. Rosenband, J.E. Stalnaker, Proc. SPIE 6673, 667303/1–11 (2007)Google Scholar
  12. T. Rosenband, W.M. Itano, P.O. Schmidt, D.B. Hume, J.C.J. Koelemeij, J.C. Bergquist, D.J. Wineland, Blackbody radiation shift of the 27Al+ 1S0-3P0 transition, Proc. EFTF Conf. (2006) pp. 289–292Google Scholar
  13. J. Mitroy, M.W.J. Bromley, Phys. Rev. A 68, 052714 (2003)Google Scholar
  14. J. Mitroy, M.W.J. Bromley, Phys. Rev. A 70, 052503 (2004)Google Scholar
  15. J. Mitroy, Phys. Rev. A 78, 052515 (2008)Google Scholar
  16. J. Mitroy, Aust. J. Phys. 52, 973 (1999)Google Scholar
  17. J. Mitroy, D.W. Norcross, Phys. Rev. A 37, 537 (1989)Google Scholar
  18. Yu. Ralchenko, A.E. Kramida, J. Reader, NIST ASD Team, NIST Atomic Spectra Database Version 3.1.5 (2008)Google Scholar
  19. S. Hameed, J. Phys. B 5, 746 (1972)Google Scholar
  20. J. Mitroy, J. Phys. B 26, 2201 (1993)Google Scholar
  21. C. Froese Fischer, G. Tachiev, A. Irimia, At. Data Nucl. Data Tab. 92, 607 (2006)Google Scholar
  22. G.A. Victor, R.F. Stewart, C. Laughlin, Astrophys. J. Suppl. Ser. 31, 237 (1976)Google Scholar
  23. H.G. Berry, J. Bromander, R. Buchta, Phys. Scr. 181, 125 (1970)Google Scholar
  24. J. Kernahan, E.H. Pinnington, J.A. O’Neill, R.L. Brooks, K.E. Donelly, Phys. Scr. 19, 267 (1979)Google Scholar
  25. M.S. Safronova, A. Derevianko, W.R. Johnson, Phys. Rev. A 58, 1016 (1998)Google Scholar
  26. M. Stanek, L. Glowacki, J. Migdalek, J. Phys. B 29, 2985 (1996)Google Scholar
  27. J. Mitroy, M.S. Safronova, Phys. Rev. A 79, 012513 (2009)Google Scholar
  28. R.A. Komara, M.A. Gearba, C.W. Fehrenbach, S.R. Lundeen, J. Phys. B 38, S87 (2005)Google Scholar
  29. J. Mitroy, J.Y. Zhang, Molec. Phys. 106, 127 (2008)Google Scholar
  30. S.G. Porsev, M.G. Kozlov, Yu.G. Rakhlina, A. Derevianko, Phys. Rev. A 64, 012508 (2001)Google Scholar
  31. S.G. Porsev, A. Derevianko, JETP 102, 195 (2006)Google Scholar
  32. E.F. Archibong, A.J. Thakkar, Phys. Rev. A 44, 5478 (1991)Google Scholar
  33. N. Reshetnikov, L.J. Curtis, M.S. Brown, R.E. Irving, Phys. Scr. 77, 015301 (2008)Google Scholar
  34. L. Hamonou, A. Hibbert, J. Phys. B 41, 245004 (2008)Google Scholar
  35. S.R. Lundeen, Adv. At. Mol. Opt. Phys. 52, 161 (2005)Google Scholar
  36. E.L. Snow, S.R. Lundeen, Phys. Rev. A 77, 052501 (2008)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • J. Mitroy
    • 1
    Email author
  • J. Y. Zhang
    • 1
  • M. W. J. Bromley
    • 2
  • K. G. Rollin
    • 2
  1. 1.Faculty of Technology, Charles Darwin UniversityDarwinAustralia
  2. 2.Department of Physics and Computational Science Research CenterSan Diego State UniversitySan DiegoUSA

Personalised recommendations