Advertisement

The European Physical Journal D

, Volume 53, Issue 1, pp 107–111 | Cite as

Towards a monolithic optical cavity for atom detection and manipulation

  • S. GleyzesEmail author
  • A. El Amili
  • R. A. Cornelussen
  • P. Lalanne
  • C. I. Westbrook
  • A. Aspect
  • J. Estève
  • G. Moreau
  • A. Martinez
  • X. Lafosse
  • L. Ferlazzo
  • J. C. Harmand
  • D. Mailly
  • A. Ramdane
Quantum Optics and Quantum Information

Abstract

We study a Fabry-Perot cavity formed from a ridge waveguide on a AlGaAs substrate. We experimentally determined the propagation losses in the waveguide at 780 nm, the wavelength of Rb atoms. We have also made a numerical and analytical estimate of the losses induced by the presence of the gap which would allow the interaction of cold atoms with the cavity field. We found that the intrinsic finesse of the gapped cavity can be on the order of F∼30, which, when one takes into account the losses due to mirror transmission, corresponds to a cooperativity parameter for our system C∼1.

PACS

03.75.Be Atom and neutron optics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Teper, Y.J. Lin, V. Vuletić, Phys. Rev. Lett. 97, 023002 (2006)Google Scholar
  2. M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, E.A. Hinds, Phys. Rev. Lett. 99, 063601 (2007)Google Scholar
  3. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, J. Reichel, Nature 450, 06331 (2007)Google Scholar
  4. A. Haase, B. Hessmo, J. Schmiedmayer, Opt. Lett. 31, 268 (2006)Google Scholar
  5. M. Trupke, E. Hinds, S. Eriksson, E. Curtis, Z. Moktadir, E. Kukharenka, M. Kraft, Appl. Phys. Lett. 87, 211106 (2005)Google Scholar
  6. T. Steinmetz, Y. Colombe, D. Hunger, T.W. Hänsch, A. Balocchi, R.J. Warburton, J. Reichel, Appl. Phys. Lett. 89, 111110 (2006)Google Scholar
  7. M. Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, S. Groth, T. Fernholz, B. Hessmo, J. Schmiedmayer, X. Liu, K.H. Brenner, Fortschr. Phys. 50, 746 (2006)Google Scholar
  8. A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien, Science 320, 646 (2008)Google Scholar
  9. M. Trupke, J. Metz, A. Beige, E.A. Hinds, J. Mod. Opt. 58, 11 (2007)Google Scholar
  10. H.C. Huang, S. Yee, M. Soma, J. Appl. Phys. 67, 1497 (1990)Google Scholar
  11. Y.J. Lin, T. Trupke, C. Chin, V. Vuletić, Phys. Rev. Lett. 92, 050404 (2004)Google Scholar
  12. L. Pavesi, M. Guzzi, J. Appl. Phys. 75, 10 (1994)Google Scholar
  13. M. Ariza-Calderon, J. Tirado-Mejia, A. Mendoza-Alvarez, G. Torres-Delgado, Appl. Surf. Sci. 123, 124, 513 (1998)Google Scholar
  14. P. Horak, B.G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, E.A. Hinds, Phys. Rev. A 67, 043806 (2003)Google Scholar
  15. J.P. Hugonin, P. Lalanne, J. Opt. Soc. Am. A. 22, 1844 (2005)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. Gleyzes
    • 1
    Email author
  • A. El Amili
    • 1
  • R. A. Cornelussen
    • 1
  • P. Lalanne
    • 1
  • C. I. Westbrook
    • 1
  • A. Aspect
    • 1
  • J. Estève
    • 2
  • G. Moreau
    • 2
  • A. Martinez
    • 2
  • X. Lafosse
    • 2
  • L. Ferlazzo
    • 2
  • J. C. Harmand
    • 2
  • D. Mailly
    • 2
  • A. Ramdane
    • 2
  1. 1.Laboratoire Charles Fabry, Institut d’Optique, CNRS et Université Paris-sud, Campus PolytechniquePalaiseau CedexFrance
  2. 2.Laboratoire de Photonique et de Nanostructures, CNRSMarcoussisFrance

Personalised recommendations