Advertisement

The European Physical Journal D

, Volume 54, Issue 2, pp 451–461 | Cite as

Hot spots and filaments in the pinch of a plasma focus: a unified approach

  • A. Di VitaEmail author
Topical issue: 23rd Symposium on Plasma Physics and Technology

Abstract

To date, no MHD-based complete description of the tiny, relatively stable, well-ordered structures (hot spots, filaments) observed in the pinch of a plasma focus seems to be feasible. Indeed, the large value of electron density suggests that a classification of such structures which is based on the approximation of local thermodynamical equilibrium (LTE) is possible. Starting from an often overlooked, far-reaching result of LTE, we derive a purely analytical description of both hot spots and filaments. In spite of their quite different topology, both configurations are extremals of the same variational principle. Well-known results of conventional MHD are retrieved as benchmark cases. It turns out that hot spots satisfy Taylor’s principle of constrained minimum of magnetic energy, the constraint being given by fixed magnetic helicity. Filaments are similar to the filaments of a superconductor and form a plasma with β= 0.11 and energy diffusion coefficient = 0.88 DBohm. Any process – like e.g. radiative collapse – which raises particle density while reducing radial size may transform filaments into hot spots. A well-known scaling law is retrieved – the collisional Vlasov high beta scaling. A link between dissipation and topology is highlighted. Accordingly, a large-current pinch may give birth to tiny hot spots with large electron density and magnetic field.

PACS

52.58.Lq Z-pinches, plasma focus, and other pinch devices 52.25.Kn Thermodynamics of plasmas 52.35.We Plasma vorticity 74.20.De Phenomenological theories 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Soto, Plasma Phys. Contr. Fusion 47, A361 (2005) Google Scholar
  2. H. Herold et al., Nucl. Fusion 29, 1255 (1989) Google Scholar
  3. V.A. Gribkov et al., Self-organising Current-Plasma Structures and Their Effect on Plasma Dynamics in a Plasma Focus, ICPP & 25th EPS Conf. Contr. Fusion Plasma Phys., Praha, June 29 – July 3, 1998, ECA Vol. 22C, 2272–2275 (1998) Google Scholar
  4. A. Matusiak et al., Włokniste Struktury Plazmowe, Institute Nuclear Research report INR/1857/XXIV/PP/B (1980) (in Polish) Google Scholar
  5. L. Jakubowski et al., Braz. J. Phys. 32, 1871 (2002) Google Scholar
  6. A. Galkowski et al., Ion Motion Modelling within Dynamic Filamentary PF Pinch Column, Proc. 18th IAEA FEC, Sorrento, Italy (2000) Google Scholar
  7. W.H. Bostick et al., On the Nature of Highly Localised X-Ray Sources in the Plasma Focus, Proc. 2nd Intl. Conf. Pulsed & High Beta Plasmas, Garching (1972) Google Scholar
  8. J.S. Brzosko et al., Nuclear Reactivity In Submillimetric Domains Of Focussed Discharges, 16th EPS, Venezia (1989) Google Scholar
  9. L. Jakubowski et al., Recent Observations of X Rays And E-Beams In PF Discharges, Proc. 26th EPS Conf. Contr. Fusion Plasma Phys., Maastricht (1999) Google Scholar
  10. L. Jakubowski et al., Measurement of Charged Particle Beams from PF Discharges, Proc. 18th IAEA FEC, Sorrento, Italy (2000) Google Scholar
  11. J. Abdallah Jr et al., Simulation of the Satellite Spectrum Produced In PF Experiments, http://www.physics.ucla.edu/icnsp/Html/abdallah/abdallah.htm Google Scholar
  12. K.N. Koshelev et al., J. Phys. D: Appl. Phys. 21, 1827 (1988) Google Scholar
  13. M. Scholz et al., Study of current sheath dynamics and charged particle emission from PF-1000 facility, ICPP & 25th EPS Conf. Contr. Fusion Plasma Phys., Praha (1998) Google Scholar
  14. J. Brzosko et al., Breeding 1010 /s radioactive nuclei in a compact PF device (2001), www.ornl.gov/ webworks/cppr/y2001/pres/111396.pdf Google Scholar
  15. G.J. Morales et al., Plasma Phys. Contr. Fusion 41, A519 (1999) Google Scholar
  16. R. Kinney et al., Phys. Plasmas 1, 260 (1994) Google Scholar
  17. S. Cable et al., Phys. Rev. A 46, 3413 (1992) Google Scholar
  18. F. Faddeev et al., J. Phys. A 35, L133 (2002) Google Scholar
  19. J.J.E. Herrera et al., On The Magnetohydrodynamic Evolution Of The m = 0 Instability In The Dense Z-Pinch (1998), http://epsppd.epfl.ch/Praha/WEB/98ICPP_W/L003PR.PDF Google Scholar
  20. V.V. Vikhrev et al., Sov. J. Plasma Phys. 8, 688 (1982) Google Scholar
  21. V. Nardi, Toroidal Vortices in Pulsed Plasmas, Proc. 2nd Intl. Conf. Pulsed High Beta Plasmas, Garching (1972) Google Scholar
  22. W. Bostick, Int. J. Fusion Energy 3, 68 (1985) Google Scholar
  23. J.B. Taylor, Phys. Rev. Lett. 33, 1139 (1974) Google Scholar
  24. L.P.J. Kamp et al., J. Plasma Phys. 70, 113 (2004) Google Scholar
  25. L.P.J. Kamp et al., Phys. Plasmas 10, 157 (2003) Google Scholar
  26. P. Glansdorff et al., Physica 30, 351 (1964) Google Scholar
  27. V.M. Faddeev et al., Self-organization of high current plasma: The formation and the equilibrium of toroidal plasmoid in a cavity of pinch neck (2001), www.ifpilm.waw.pl/Plasma2001/Prace1/P1.12.pdf Google Scholar
  28. S.R. DeGroot et al., Non-Equilibrium Thermodynamics (North Holland, 1962) Google Scholar
  29. E.T. Jaynes, Ann. Rev. Phys. Chem. 31, 579 (1980) Google Scholar
  30. F.L. Hinton et al., Rev. Mod. Phys. 48, 239 (1976) Google Scholar
  31. A.H. Boozer, Phys. Fluids B 4, 2845 (1992) Google Scholar
  32. K. Molvig et al., Phys. Fluids 27, 2847 (1984) Google Scholar
  33. A. Di Vita, J. Plasma Phys. 46, 423 1991) Google Scholar
  34. M. Brusati et al., J. Plasma Phys. 50, 210 (1993) Google Scholar
  35. R. Balescu, Trans. Fusion Technol. 25, 105 (1994) Google Scholar
  36. F. Pegoraro, Fusion Technol. 26, 1243 (1994) Google Scholar
  37. A. Rogister et al., Phys. Fluids B 4, 804 (1992) Google Scholar
  38. I. Prigogine et al., Chemical Thermodynamics (Longmans-Green, 1954) Google Scholar
  39. S.I. Braginskij, Transport Processes In A Plasma Review Plasma Physics, edited by Leontovich (Consultants Bureau, New York, 1965) Google Scholar
  40. A. Di Vita, Proc. R. Soc. A 458, 21 (2002) Google Scholar
  41. A.H. Boozer, J. Plasma Phys. 35, 133 (1986) Google Scholar
  42. E. Rebhan, Phys. Rev. A 32, 581 (1985) Google Scholar
  43. L.D. Landau et al., Electrodynamics Of Continuous Media (Pergamon, 1960) Google Scholar
  44. V. Antoni et al., Nucl. Fusion 29, 1759 (1989) Google Scholar
  45. H.A.B. Bodin, Nucl. Energy 29, 57 (1990) Google Scholar
  46. H. Froehlich, Proc. Phys. Soc. 87, 330 (1966) Google Scholar
  47. L.D. Landau et al., Statistical Physics – Theory Of The Condensed State (Pergamon, 1960) Google Scholar
  48. J.B. Taylor, Plasma Phys. Contr. Fusion 39, A1 (1997) Google Scholar
  49. J.B. Taylor et al., Phys. Fluids 17, 1492 (1971) Google Scholar
  50. L. Turner, IEEE Trans. Plasma Sci. PS-14, 849 (1986) Google Scholar
  51. A. Sestero, Plasma Phys. 22, 1039 (1980) Google Scholar
  52. A. Di Vita, J. Plasma Phys. 50, 1 (1993) Google Scholar
  53. M. Steenbeck, Wissenschaftlichen Veroeffentlichungen Siemens Werke 1, 59 (German, 1940) Google Scholar
  54. I.V. Elsgolts, Differential Equations And Variational Calculus (Mir, Moscow, 1981) Google Scholar
  55. V.I. Smirnov, Course Of Higher Mathematics (Mir, Moscow, 1977) Google Scholar
  56. L.D. Landau et al., Statistical Physics (Pergamon, 1960) Google Scholar
  57. J.W. Connor et al., Nucl. Fusion 17, 1047 (1977) Google Scholar
  58. A. Bernard et al., J. Moscow Phys. Soc. 8, 93 (1998) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Golden Garland Intl.GiovinazzoItaly

Personalised recommendations