Advertisement

The European Physical Journal D

, Volume 54, Issue 2, pp 463–466 | Cite as

Characterisation of laser-produced tungsten plasma using optical spectroscopy method

  • M. KubkowskaEmail author
  • P. Gasior
  • M. Rosinski
  • J. Wolowski
  • M. J. Sadowski
  • K. Malinowski
  • E. Skladnik-Sadowska
Topical issue: 23rd Symposium on Plasma Physics and Technology

Abstract

This paper describes results of spectroscopic investigation of laser-produced tungsten plasma. The laser intensity on the target surface reached up to 30 GW/cm2 depending on the focusing conditions. Optical spectra emitted from plasma plumes which were formed under vacuum conditions in front of the tungsten target due to the interaction of Nd-YAG laser pulses (1.06 μm, 0.5 J), were characterised by means of an optical spectrometer (λ/Δλ= 900) in the wavelength range from 300 to 1100 nm. The spectra were recorded automatically with the use of a CCD detector with exposition time varied from 100 ns to 50 ms. On the basis of WI and WII lines it was possible to estimate electron temperature and electron density which corresponded to the expansion phase of the plasma. Te and Ne were measured as 1.1 eV and 8×1016 cm-3, respectively. The spectra collected by the ion energy analyser showed that the plasma included tungsten ions up to 6+ ion charge. Signals from the ion collector allowed to estimate the average value of ion energy of tungsten as 4.6 keV. Basing on this value the electron temperature corresponding to the initial stage of the plasma formation was estimated to be about 320 eV. Optical microscope investigation showed that laser irradiation caused structural changes on the surface of the target.

PACS

52-38.-r Laser–plasma interactions 52.70.-m Plasma diagnostic techniques and instrumentation 52.70.Kz Optical (ultraviolet, visible, infrared) measurements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.E. Kramida, T. Shirai, J. Plasma Fusion Res. 7, 334 (2006), and references therein Google Scholar
  2. NIST Atomic Spectra Database, http://physics.nist.gov/PhysRefData/contents.html Google Scholar
  3. A.V. Tsarenko, A.K. Marchenko, M.J. Sadowski, E. Skladnik-Sadowska, K. Malinowski, J. Wolowski, A. Czarnecka, P. Gsior, P. Parys, M. Rosiski, Problems of Atomic science and Technology, Series: Plasma Physics (2006), Vol. 12, p. 150 Google Scholar
  4. H.R. Griem, Principles of Plasma Spectroscopy (Cambridge Monographs on Plasma Physics, Cambridge University Press, 1997) Google Scholar
  5. M.J. Sadowski, K. Malinowski, E. Skladnik-Sadowska, M. Scholz, A. Tsarenko, J. Zebrowski, SPIE Conference Proceedings 5948, 46 (2005) Google Scholar
  6. A. Pospieszczyk, G. Sergienko, I. Beigman, L. Vainshtein, Proc. ADAS Workshop, Abingdon, England, 2006 Google Scholar
  7. L. Laska, K. Masek, B. Kralikowa, J. Krasa, J. Skala, K. Rohlena, Appl. Phys. Lett. 65, 691 (1994) Google Scholar
  8. A.E. Kramida, J. Reader, At. Data Nucl. Data Tab. 92, 457 (2006) Google Scholar
  9. L. Iglesias, V. Kaufman, O. Garcia-Riquelme, F. Rico, Phys. Scripta 31, 173 (1985) Google Scholar
  10. M. Schultz-Johanning, R. Kling, R. Schnabel, M. Kock, Z. Li, H. Lundberg, S. Johansson, Phys. Scr. 63, 367 (2001) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. Kubkowska
    • 1
    Email author
  • P. Gasior
    • 1
  • M. Rosinski
    • 1
  • J. Wolowski
    • 1
  • M. J. Sadowski
    • 1
    • 2
  • K. Malinowski
    • 2
  • E. Skladnik-Sadowska
    • 2
  1. 1.Institute of Plasma Physics and Laser Microfusion (IPPLM)WarsawPoland
  2. 2.The Andrzej Soltan Institute for Nuclear Studies (IPJ)Otwock-SwierkPoland

Personalised recommendations