Advertisement

The European Physical Journal D

, Volume 54, Issue 2, pp 349–367 | Cite as

Composition and thermodynamic functions of non-ideal plasma

  • O. ŽivnýEmail author
Topical issue: 23rd Symposium on Plasma Physics and Technology

Abstract

A general method is proposed for the computation of the composition and thermodynamic properties of a non-ideal fluid system in thermodynamic equilibrium. The method is based on minimizing the system’s Gibbs energy to compute at constant pressure or Helmholtz energy to compute at constant volume, using successive approximations. The computation algorithm is implemented into the computer program in the C++ language. The method described has been used to compute the composition and thermodynamic properties of a system made up of products of SF6 dissociation and ionization.

PACS

51.30.+i Thermodynamic properties, equations of state 52.25.Kn Thermodynamics of plasmas 52.27.Cm Multicomponent and negative-ion plasmas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Gleizes, J.J. Gonzales, P. Freton, J. Phys. D: Appl. Phys. 38, R153 (2005) Google Scholar
  2. J.P. Trelles, J.V.R. Heberlein, E. Pfender, J. Phys. D: Appl. Phys. 40, 5937 (2007) Google Scholar
  3. A. D’Angola, G. Colonna, C. Gorse, M. Capitelli, Eur. Phys. J. D 46, 129 (2008) Google Scholar
  4. B. Chervy, A. Gleizes, M. Razafinimanana, J. Phys. D: Appl. Phys. 27, 1193 (1994) Google Scholar
  5. P. André, W. Bussière, D. Rochette, Plasma Chem. Plasma Process. 27, 381 (2007) Google Scholar
  6. O. Coufal, P. Sezemský, J. Phys. D: Appl. Phys. 34, 2174 (2001) Google Scholar
  7. M. Bartlová, O. Coufal, J. Phys. D: Appl. Phys. 34, 2174 (2001) Google Scholar
  8. O. Coufal, P. Sezemský, O. Živný, J. Phys. D: Appl. Phys. 38, 1265 (2005), available at http:// www.feec.vutbr.cz/~coufal (Jan. 2009) Google Scholar
  9. O. Coufal, J. Phys. D: Appl. Phys. 40, 3371 (2007) Google Scholar
  10. W.R. Smith, R.W. Missen, Chemical Reaction Equilibrium Analysis: Theory and Algorithms (Wiley, New York, 1982) Google Scholar
  11. D. Godin, J.Y. Trépanier, Plasma Chem. Plasma Process. 24, 447 (2004) Google Scholar
  12. R. Girard, J.J. Gonzalez, A. Gleizes, J. Phys. D: Appl. Phys. 32, 1229 (1999) Google Scholar
  13. P. André, Contrib. Plasma Phys. 37, 23 (1997) Google Scholar
  14. P. André, Eur. Phys. J. Appl. Phys. 17, 53 (2002) Google Scholar
  15. D. Rochette, W. Bussière, P. André, Plasma Chem. Plasma Process. 24, 475 (2004) Google Scholar
  16. O. Coufal, High Temp. Chem. Process. 4, 159 (1995) Google Scholar
  17. O. Coufal, J. Phys. D: Appl. Phys. 31, 2025 (1998) Google Scholar
  18. M.R. Zaghloul, M.A. Bourham, J.M. Doster, J. Phys. D: Appl. Phys. 33, 977 (2000) Google Scholar
  19. G. Colona, A. D’Angola, Comput. Phys. Commun. 163, 177 (2004) Google Scholar
  20. G. Colona, Comput. Phys. Commun. 177, 493 (2007) Google Scholar
  21. W.B. White, S.M. Johnson, G.B. Dantzig, J. Chem. Phys. 28, 751 (1958) Google Scholar
  22. R. Holub, P. Voňka, The Chemical Equilibrium of Gaseous Systems (Academia, Prague, 1975) Google Scholar
  23. P. André et al., Eur. Phys. J. Appl. Phys. 25, 165 (2004) Google Scholar
  24. O. Živný, High Temp. Mater. Process. 4, 385 (2000) Google Scholar
  25. M. Mitchner, C.H. Kruger, Jr., Partially Ionized Gases (Wiley, New York, 1973) Google Scholar
  26. K.S. Drellishak, C.F. Knopp, A.B. Cambel, Phys. Fluids 6, 1280 (1963) Google Scholar
  27. H.R. Griem, Phys. Rev. 128, 997 (1962) Google Scholar
  28. V. Rat et al., J. Phys. D: Appl. Phys. 34, 2191 (2001) Google Scholar
  29. T. Hill, Statistical Mechanics (McGraw-Hill, New York, 1956) Google Scholar
  30. J.A. Beattie, Chem. Rev. 44, 141 (1949) Google Scholar
  31. D.A. McQuarrie, Statistical Mechanics (University Science Books, Sausalito, CA, 2000) Google Scholar
  32. Thermodynamic Properties of Individual Substances, edited by L.V. Gurvich, I.V. Veyts, C.B Alcock (Hemisphere, New York, 1989), Vol. I Google Scholar
  33. Quantum Mechanical Prediction of Thermochemical Data, edited by J. Cioslowski (Kluwer, Dordrecht, 2001) Google Scholar
  34. B. Njegic, M.S. Gordon, J. Chem. Phys. 125, 224102 (2006) Google Scholar
  35. M.W. Chase, Jr., NIST-JANAF Thermochemical Tables (NIST, Gaithersburg, MD, 1998) (part I and II), J. Phys. Chem. Ref. DataMon. 9 Google Scholar
  36. D. Kremp, M. Schlanges, W.-D. Kraeft, Quantum Statistics of Nonideal Plasmas (Springer, Berlin, 2005) Google Scholar
  37. W.-D. Kraeft, J. Vorberger, D.O. Griecke, M. Schlanges, Contrib. Plasma Phys. 47, 253 (2007) Google Scholar
  38. W. Ebeling, A. Filinov, M. Bonitz, T. Pohl, J. Phys. A: Math. Gen. 39, 4309 (2006) Google Scholar
  39. T.S. Ramazanov, K.N. Dzhumagulova, Y.A. Omarbakiyeva, Phys. Plasmas 12, 092702 (2005) Google Scholar
  40. Yu.V. Arkhipov, F.M. Baimbetov, A.E. Davletov, Phys. Plasmas 12, 082701 (2005) Google Scholar
  41. J.R. Stallcop, H. Partridge, E. Levin, Phys. Rev. A 64, 042722 (2001) Google Scholar
  42. R. Kjellander, J. Phys. Chem. 99, 10392 (1995) Google Scholar
  43. O. Coufal, O. Živný, Czech. J. Phys. Suppl. D 56, D1 (2006) Google Scholar
  44. M.R. Zaghloul, M.A. Bourham, J.M. Doster, J.D. Powell, Phys. Lett. A 262, 86 (1999) Google Scholar
  45. O. Živný, Ab initio calculations, unpublished results (2008) Google Scholar
  46. GAMESS, General Atomic and Molecular Electronic Structure System (2008), available at http:// www.msg.chem.iastate.edu/gamess (Jan. 2009); M.W. Schmidt, K.K. Baldridge, J.A. Boatz et al., J. Comput. Chem. 14, 1347 (1993); Theory and Applications of Computational Chemistry: the first forty years, edited by M.S. Gordon, M.W. Schmidt C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria (Elsevier, Amsterdam, 2005), pp. 1167–1189 Google Scholar
  47. D.J. Grant, D.A. Dixon, J.S. Francisco, J. Chem. Phys. 126, 144308 (2007) Google Scholar
  48. K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure, Constants of Diatomic Molecules. (Van Nostrand, New York, 1979), Vol. IV Google Scholar
  49. O. Živný, J. Czernek, Chem. Phys. Lett. 308, 165 (1999) Google Scholar
  50. I.M.B. Nielsen, S.L. Zou, J.M. Bowman, C.L. Janssen, Chem. Phys. Lett. 352, 26 (2002) Google Scholar
  51. M.L. Polak, M.K. Gilles, W.C. Lineberger, J. Chem. Phys. 96, 7191 (1992) Google Scholar
  52. K.A. Peterson, J.R. Lyons, J.S. Francisco, J. Chem. Phys. 125, 084314 (2006) Google Scholar
  53. W. Koch, J. Natterer, C. Heinemann, J. Chem. Phys. 102, 6159 (1995) Google Scholar
  54. H. Šormová, R. Liguerri, P. Rosmus, J. Fabian, N. Komiha, Collect. Czech. Chem. Commun. 72, 83 (2007) Google Scholar
  55. J. Czernek, O. Živný, J. Chem. Phys. 129, 194305 (2008) Google Scholar
  56. E.P.F. Lee, D.K.W. Mok, F.-T. Chau, J. Chem. Phys. 125, 104304 (2006) Google Scholar
  57. J. Czernek, O. Živný, Chem. Phys. 344, 142 (2008) Google Scholar
  58. Y.-S. Cheung, Y.-J. Chen, C.Y. Ng, S.W. Chiu, W.-K. Li, J. Am. Chem. Soc. 117, 9725 (1995) Google Scholar
  59. M. Kronberg, S. von Ahsen, H. Willner, J.S. Francisco, Angew. Chem. Int. Ed. 44, 253 (2005) Google Scholar
  60. K.C. Lobring, C.C. Check, T.M. Gilbert, L.S. Sunderlin, Int. J. Mass Spectrom. 227, 361 (2003) Google Scholar
  61. W. Xu, S. Cheng, S. Lu, J. Mol. Struct. Theochem 863, 28 (2008) Google Scholar
  62. F.R. Ornellas, Chem. Phys. Lett. 448, 24 (2007) Google Scholar
  63. T.M. Miller, A.A. Viggiano, W.R. Dolbier, Jr., T.A. Sergeeva, J.F. Friedman, J. Phys. Chem. A 111, 1024 (2007) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and Communication, Brno University of TechnologyBrnoCzech Republic

Personalised recommendations