The European Physical Journal D

, Volume 54, Issue 2, pp 249–258 | Cite as

Study of carboxylic functionalization of polypropylene surface using the underwater plasma technique

  • R. S. JoshiEmail author
  • J. F. Friedrich
  • M. H. Wagner
Topical issue: 23rd Symposium on Plasma Physics and Technology


Non-equilibrium solution plasma treatment of polymer surfaces in water offers the possibility of more dense and selective polymer surface functionalization in comparison to the well-known and frequently used low-pressure oxygen plasma. Functional groups are introduced when the polymer surface contacts the plasma moderated solution especially water solutions. The emission of ions, electrons, energy-rich neutrals and complexes, produced by the ion avalanche are limited by quenching, with the aid of the ambient water phase. The UV-radiation produced in plasma formation also helps to moderate the reaction solution further by producing additional excited, ionized/dissociated molecules. Thus, monotype functional groups equipped polymer surfaces, preferably OH groups, originating from the dissociated water molecules, could be produced more selectively. An interesting feature of the technique is its flexibility to use a wide variety of additives in the water phase. Another way to modify polymer surfaces is the deposition of plasma polymers carrying functional groups as carboxylic groups used in this work. Acetic acid, acrylic acid, maleic and itaconic acid were used as additive monomers. Acetic acid is not a chemically polymerizing monomer but it could polymerize by monomer/molecular fragmentation and recombination to a cross linked layer. The other monomers form preferably water-soluble polymers on a chemical way. Only the fragmented fraction of these monomers could form an insoluble coating by cross linking to substrate. The XPS analysis was used to track the alterations in –O-CO- bond percentage on the PP surface. To identify the -COOH groups on substrate surface unambiguously, which have survived the plasma polymerization process, the derivatization with trifluoroethanol was performed.


52.80.Wq Discharge in liquids and solids 82.33.Xj Plasma reactions 61.82.Pv Polymers, organic compounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. K. Rossmann, J. Polym. Sci. 19, 141 (1956) Google Scholar
  2. N. Inagaki, Plasma surface modification and plasma polymerization (Technomic Publication, Lancaster, Pennsylvania, 1996) Google Scholar
  3. G. Kühn, S. Weidner, R. Decker, A. Ghode, J. Friedrich, Surf. Coat. Technol. 116119, 796 (1999) Google Scholar
  4. C. Oehr, M. Müller, B. Elkin, D. Hegemann, U. Vohrer, Surf. Coat. Technol. 116, 25 (1999) Google Scholar
  5. I. Koprinarov, A. Lippitz, J.F. Friedrich, W.E.S. Unger, Ch. Wöll, Polymer 39, 3001 (1998) Google Scholar
  6. S. Wettmarshausen, H.-U. Mittmann, G. Kühn, G. Hidde, J.F. Friedrich, Plasma Proc. Polym. 4, 832 (2007) Google Scholar
  7. J. Friedrich, G. Kühn, R. Mix, Prog. Colloid Polym. Sci. 132, 62 (2006) Google Scholar
  8. M. Noeske, J. Degenhardt, S. Strudthoff, U. Lommatzsch, Int. J. Adhes. Adhes. 24, 171 (2004) Google Scholar
  9. J. Friedrich, R. Mix, G. Kühn, W. Unger, Plasma Proc. Polym. 1, 28 (2004) Google Scholar
  10. R. d’Agostino, P. Favia, C. Oehr, M.R. Wertheimer (Wiley-VCH, Weinheim, Switzerland, 2005) pp. 3–21 Google Scholar
  11. R. Joshi, R.-D. Schulze, A. Meyer-Plath, J. Friedrich, Plasma Proc. Polym. 5, 695 (2008) Google Scholar
  12. J. Friedrich, W. Unger, A. Lippitz, I. Koprinarov, A. Ghode, Sh. Geng, G. Kühn, Composite Interface 10, 139 (2003) Google Scholar
  13. E. Kokufuta, T. Sodeyama, K. Fujimori, K. Harada, L. Nakamura, J. Chem. Soc., Chem. Commun. 5, 269 (1984) Google Scholar
  14. E. Kokufuta, T. Shibasaki, T. Sodeyama, K. Harada, Chem. Lett. 14, 10, 1569 (1985) Google Scholar
  15. G. Beamson, D. Briggs, High Resolution XPS of Organic Polymers (John Wiley & Sons, Chichester, 1992) Google Scholar
  16. M.R. Alexander, P.V. Wright, B.D. Ratner, Surf. Interf. Anal. 24, 217 (1996) Google Scholar
  17. M. Sato, T. Ohgiyama, J. Clements, IEEE Trans. Ind. Appl. 32, 106 (1996) Google Scholar
  18. G. Jinzhang, W. Aixiang, F. Yan, W. Jianlin, M Dongping, G. Xiao, L. Yan, Y. Wu, Plasma Sci. Technol. 10, 30 (2008) Google Scholar
  19. B. Tate, Die Makromoleculare Chemie 109, 176 (1967) Google Scholar
  20. G. Kühn, I. Retzko, A. Lippitz, W. Unger, J. Friedrich, Surf. Coat. Technol. 142144, 494 (2001) Google Scholar
  21. A. Nikiforov, C. Leys, Plasma Chem. Plasma Process. 26, 415 (2006) Google Scholar
  22. Hans-Georg, Elias, Makromoleküle, Vol. 1 (Huthig & Wepf, 1990) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Bundesanstalt für Materialforschung und –prüfungBerlinGermany
  2. 2.Technische UniversitätBerlinGermany

Personalised recommendations