Advertisement

Controlling the divergence of high harmonics from solid targets: a route toward coherent harmonic focusing

  • 148 Accesses

  • 11 Citations

Abstract

Harmonic generation from relativistically oscillating plasma surfaces formed during the interaction of high contrast lasers with solid-density targets has been shown to be an efficient source of extreme ultraviolet (XUV) and X-ray radiation. Recent work has demonstrated that the exceptional coherence properties of the driving laser can be mirrored in the emitted radiation, permitting diffraction limited performance and attosecond phase locking of the harmonic radiation. These unique properties may allow the coherent harmonic focusing (CHF) of high harmonics generated from solid density targets to intensities on the order of the Schwinger limit of 1029 W cm-2 with laser systems available in the near future [Phys. Rev. Lett. 93, 115002 (2004)] and thus pave the way for unique experiments exploring the nonlinear properties of vacuum on ultra-fast timescales. In this paper we investigate experimentally as well as numerically the prospect of focusing high harmonics under realistic experimental conditions and demonstrate, using particle in cell (PIC) simulations, that precise control of the wavefronts and thus the focusability of the generated harmonics is possible with pre-shaped targets.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    J. Schwinger, Phys. Rev. 82, 664 (1951)

  2. 2.

    N. Narozhny, S. Bulanov, V. Mur, V. Popov, Phys. Lett. A 330, 1 (2004)

  3. 3.

    N. Narozhny, S. Bulanov, V. Mur, V. Popov, JETP Lett. 80, 382 (2004)

  4. 4.

    M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006)

  5. 5.

    R. Schützhold, G. Schaller, D. Habs, Phys. Rev. Lett. 97, 121302 (2006)

  6. 6.

    A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Phys. Plasmas 14, 032102 (2007)

  7. 7.

    L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, Rev. Mod. Phys. 80, 787 (2008)

  8. 8.

    S. Gordienko, A. Pukhov, O. Shorokhov, T. Baeva, Phys. Rev. Lett. 93, 115002 (2004)

  9. 9.

    T. Baeva, S. Gordienko, A. Pukhov, Phys. Rev. E 74, 046404 (2006)

  10. 10.

    G.D. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, F. Krausz, New J. Phys. 8, 19 (2006)

  11. 11.

    S.V. Bulanov, N.M. Naumova, F. Pegoraro, Phys. Plasmas 1, 745 (1994)

  12. 12.

    R. Lichters, J. Meyer-ter-Vehn, A. Pukhov, Phys. Plasmas 3, 3425 (1996)

  13. 13.

    S. Gordienko, A. Pukhov, O. Shorokhov, T. Baeva, Phys. Rev. Lett. 94, 103903 (2005)

  14. 14.

    F. Quéré, C. Thaury, P. Monot, S. Dobosz, P. Martin, J.-P. Geindre, P. Audebert, Phys. Rev. Lett. 96, 125004 (2006)

  15. 15.

    B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M.S. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, P. Norreys, Nat. Phys. 2, 456 (2006)

  16. 16.

    B. Dromey, S. Kar, C. Bellei, D.C. Carroll, R.J. Clarke, J.S. Green, S. Kneip, K. Markey, S.R. Nagel, P.T. Simpson, L. Willingale, P. McKenna, D. Neely, Z. Najmudin, K. Krushelnick, P.A. Norreys, M. Zepf, Phys. Rev. Lett. 99, 085001 (2007)

  17. 17.

    Y. Nomura, R. Hörlein, P. Tzallas, B. Dromey, S. Rykovanov, Z. Major, J. Osterhoff, S. Karsch, L. Veisz, M. Zepf, D. Charalambidis, F. Krausz, G.D. Tsakiris, Nat. Phys. 5, 124 (2009)

  18. 18.

    P. Agostini, L.F. DiMauro, Rep. Prog. Phys. 67, 813 (2004)

  19. 19.

    P.B. Corkum, F. Krausz, Nat. Phys. 3, 381 (2007)

  20. 20.

    W. Ackermann et al., Nature Photonics 1, 336 (2007)

  21. 21.

    A.J. Langley, E.J. Divall, C.H. Hooker, M.H.R. Hutchinson, A.J.-M.P. Lecot, D. Marshall, M.E. Payne, P.F. Taday, Technical report, Rutherford Appleton Laboratory, 2000

  22. 22.

    H. Kapteyn, M. Murnane, A. Szoke, R. Falcone, Opt. Lett. 16, 490 (1991)

  23. 23.

    B. Dromey, S. Kar, M. Zepf, P. Foster, Rev. Sci. Instrum. 75, 645 (2004)

  24. 24.

    D. Neely, D. Chambers, C. Danson, P. Norreys, S. Preston, F. Quinn, M. Roper, J. Wark, M. Zepf, AIP Conf. Proc. 426, 479 (1998)

  25. 25.

    R. Hörlein, B. Dromey, D. Adams, Y. Nomura, S. Kar, K. Markey, P.S. Foster, D. Neely, F. Krausz, G.D. Tsakiris, M. Zepf, New J. Phys. 10, 083002 (2008)

  26. 26.

    B. Dromey, D. Adams, R. Hörlein, Y. Nomura, S.G. Rykovanov, D.C. Caroll, P.S. Foster, S. Kar, K. Markey, P. McKenna, D. Neely, M. Geissler, G.D. Tsakiris, M. Zepf, Nat. Phys. 5, 146 (2009)

  27. 27.

    D. An der Brügge, A. Pukhov, Phys. Plasmas 14, 093104 (2007)

  28. 28.

    S. Rykovanov, M. Geissler, J. Meyer-ter-Vehn, G.D. Tsakiris, New J. Phys. 10, 025025 (2008)

  29. 29.

    M. Geissler, S. Rykovanov, J. Schreiber, J. Meyer-ter-Vehn, G.D. Tsakiris, New J. Phys. 9, 218 (2007)

  30. 30.

    N.M. Naumova, J.A. Nees, I.V. Sokolov, B. Hou, G.A. Mourou, Phys. Rev. Lett. 92, 063902 (2004)

  31. 31.

    M. Born, E. Wolf, Principles of optics, 7th edn. (Cambridge University Press, 1999)

  32. 32.

    T. Morishita, S. Watanabe, C.D. Lin, Phys. Rev. Lett. 98, 083003 (2007)

  33. 33.

    J. Feist, S. Nagele, R. Pazourek, E. Persson, B.I. Schneider, L.A. Collins, J. Burgdörfer, Phys. Rev. A 77, 043420 (2008)

  34. 34.

    J.J. Honrubia, J. Meyer-ter-Vehn, Nucl. Fusion 46, L25 (2006)

  35. 35.

    R. Hörlein, Y. Nomura, J. Osterhoff, Z. Major, S. Karsch, F. Krausz, G.D. Tsakiris, Plasma Phys. Contr. Fusion 50, 124002 (2008)

Download references

Author information

Correspondence to R. Hörlein.

Electronic supplementary material

Supplementary material, approximately 3.26 MB.

Supplementary material, approximately 3.26 MB.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hörlein, R., Rykovanov, S., Dromey, B. et al. Controlling the divergence of high harmonics from solid targets: a route toward coherent harmonic focusing. Eur. Phys. J. D 55, 475–481 (2009) doi:10.1140/epjd/e2009-00084-x

Download citation

PACS

  • 42.65.Ky Frequency conversion; harmonic generation, including higher-order harmonic generation
  • 42.65.Re Ultrafast processes; optical pulse generation and pulse compression
  • 52.59.Ye Plasma devices for generation of coherent radiation
  • 52.65.Rr Particle-in-cell method