Observation of the transient charging of a laser-irradiated solid

  • K. Quinn
  • P. A. Wilson
  • B. Ramakrishna
  • G. Sarri
  • L. Romagnani
  • A. Pipahl
  • O. Willi
  • L. Lancia
  • J. Fuchs
  • D. C. Carroll
  • M. N. Quinn
  • P. Gallegos
  • X. H. Yuan
  • P. McKenna
  • R. J. Clarke
  • D. Neely
  • M. Notley
  • A. Macchi
  • M. Borghesi
Topical issue: Fundamental Physics and Ultra-High Laser Fields

Abstract

The proton radiography technique has been used to investigate the incidence of a 3 ×1019 W/cm2 infrared pulse with a 125 μm-diameter gold wire. The laser interaction is observed to drive the growth of a radial electric field ∼ 1010 V/m on the surface of the wire which rises and decays over a temporal window of 20 ps. Such studies of the ultrafast charging of a solid irradiated at high-intensity may be of relevance to schemes for laser-driven ion acceleration and the fast-ignitor concept for inertial confinement fusion.

PACS

41.75.Jv Laser-driven acceleration 52.38.Kd Laser-plasma acceleration of electrons and ions 52.57.Kk Fast ignition of compressed fusion fuels 

References

  1. 1.
    M. Borghesi et al., Fusion Sci. Technol. 49, 412 (2006), and references thereinGoogle Scholar
  2. 2.
    M. Tabak et al., Phys. Plasmas 1, 1626 (1994)CrossRefADSGoogle Scholar
  3. 3.
    T.E. Cowan et al., Phys. Rev. Lett. 92, 204801 (2004)CrossRefADSGoogle Scholar
  4. 4.
    S.V. Bulanov et al., Phys. Lett. A 299, 240 (2002)CrossRefADSGoogle Scholar
  5. 5.
    I. Spencer et al., Nucl. Instrum. Meth. B 183, 449 (2001)CrossRefADSGoogle Scholar
  6. 6.
    P.K. Patel et al., Phys. Rev. Lett. 91, 125004 (2003)CrossRefADSGoogle Scholar
  7. 7.
    U. Linz, J. Alonso, Phys. Rev. ST Accel. Beams 10, 094801 (2007)CrossRefADSGoogle Scholar
  8. 8.
    R. Kodama et al., Nature 432, 1005 (2004)CrossRefADSGoogle Scholar
  9. 9.
    J.S. Green et al., Nature Phys. 3, 853 (2007)CrossRefADSGoogle Scholar
  10. 10.
    C. Danson et al., Nucl. Fusion 44, S239 (2004)CrossRefADSGoogle Scholar
  11. 11.
    M. Borghesi et al., Appl. Phys. Lett. 82, 1529 (2003)CrossRefADSGoogle Scholar
  12. 12.
    L. Romagnani et al., Laser Part. Beams 26, 241 (2008) and references thereinCrossRefGoogle Scholar
  13. 13.
  14. 14.
    D.S. Hey et al., Rev. Sci. Instrum. 79, 053501 (2008)CrossRefADSGoogle Scholar
  15. 15.
  16. 16.
    P. McKenna et al., Phys. Rev. Lett. 98, 145001 (2007)CrossRefADSGoogle Scholar
  17. 17.
    L. Romagnani et al., Phys. Rev. Lett. 95, 195001 (2005)CrossRefADSGoogle Scholar
  18. 18.
    F.N. Beg et al., Appl. Phys. Lett. 84, 2766 (2004)CrossRefADSGoogle Scholar
  19. 19.
    M.G. Haines, Phys. Rev. Lett. 47, 917 (1981)CrossRefADSGoogle Scholar
  20. 20.
    A. Hauer, R.J. Mason, Phys. Rev. Lett. 51, 459 (1983)CrossRefADSGoogle Scholar
  21. 21.
    M. Key et al., Phys. Plasmas 5, 1966 (1998)CrossRefADSGoogle Scholar
  22. 22.
    T. Toncian et al., Science 312, 410 (2006)CrossRefADSGoogle Scholar
  23. 23.
    S. Kar et al., Phys. Rev. Lett. 100, 105004 (2008)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • K. Quinn
    • 1
  • P. A. Wilson
    • 1
  • B. Ramakrishna
    • 1
  • G. Sarri
    • 1
  • L. Romagnani
    • 1
  • A. Pipahl
    • 2
  • O. Willi
    • 2
  • L. Lancia
    • 3
  • J. Fuchs
    • 3
  • D. C. Carroll
    • 4
  • M. N. Quinn
    • 4
  • P. Gallegos
    • 4
  • X. H. Yuan
    • 4
  • P. McKenna
    • 4
  • R. J. Clarke
    • 5
  • D. Neely
    • 5
  • M. Notley
    • 5
  • A. Macchi
    • 6
  • M. Borghesi
    • 1
  1. 1.Department of Physics and AstronomyQueen’s University BelfastBelfastUK
  2. 2.Institut für Laser-und Plasmaphysik, Heinrich-Heine-UniversitätDüsseldorfGermany
  3. 3.Laboratoire pour l’Utilisation des Lasers Intenses, École PolytechniquePalaiseauFrance
  4. 4.SUPA, Department of PhysicsUniversity of StrathclydeGlasgowUK
  5. 5.Central Laser Facility, Rutherford Appleton LaboratoryChiltonUK
  6. 6.Dipartimento di Fisica “E. Fermi”CNR/INFM/polyLABPisaItaly

Personalised recommendations