Advertisement

The European Physical Journal D

, Volume 53, Issue 1, pp 1–8 | Cite as

Isotope shifts of 6s5d3D-6s6p1P1 transitions in neutral barium

  • U. Dammalapati
  • S. De
  • K. Jungmann
  • L. WillmannEmail author
Atomic Physics

Abstract

First laser spectroscopic measurements of the 6s5d3D1-6s6p1P1 and 6s5d3D2-6s6p1P1 transitions in several isotopes of atomic barium have been performed. The hyperfine structure of these transitions was optically resolved and isotope shifts for even and odd isotopes were determined. The isotope shifts show a deviation from their expected behavior for odd isotopes in an analysis based on King-plots. This observation puts atomic structure calculations at test because available theories do not predict this. A profound understanding of the wavefunctions for heavy alkaline earth systems like barium (Ba) and radium (Ra) is essential for a theoretical evaluation of their sensitivity to fundamental symmetry breaking effects such as they could be observed, e.g., through permanent electric dipole moments. Further the absolute frequency of the 6s2 1S0-6s6p3P1 intercombination line in 138Ba was determined to be 12 636.6232(1) cm-1.

PACS

42.62.Fi Laser spectroscopy 31.30.Gs Hyperfine interactions and isotope effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.V. Flambaum, Phys. Rev. A 60, R2611 (1999)Google Scholar
  2. V.A. Dzuba, V.V. Flambaum, J.S.M. Ginges, Phys. Rev. A 61, 062509 (2000)Google Scholar
  3. J. Engel, J.L. Friar, A.C. Hayes, Phys. Rev. C 61, 035502 (2000); J. Dobaczewski, J. Engel, Phys. Rev. Lett. 94, 232502 (2005)Google Scholar
  4. V.A. Dzuba, V.V. Flambaum, J.S.M. Ginges, M.G. Kozlov, Phys. Rev. A 66, 012111 (2002); V.V. Flambaum, V.G. Zelevinsky, Phys. Rev. C 68, 035502 (2003)Google Scholar
  5. Groups at the University of Southwest Wales (V. Flambaum et al.), at Warsaw University (K. Pachucki et al.), and at Krakow University (J. Bierón) develop and improve independent numerical codes for heavy atomic systems, (e.g. J. Bierón, C. Froese Fischer, S. Fritzsche, K. Pachucki, J. Phys. B: At. Mol. Opt. Phys. 37, 305 (2004)). The calculations aim at a better understanding of atomic parity violation and other symmetry violating contributions to the atomic structure. Private communications (2008)Google Scholar
  6. J.R. Guest, N.D. Scielzo, I. Ahmad, K. Bailey, J.P. Greene, R.J. Holt, Z.-T. Lu, T.P. O’Connor, D.H. Potterveld, Phys. Rev. Lett. 98, 093001 (2007)Google Scholar
  7. K. Jungmann, Proc. Heavy Quarks and Leptons, HQL06, edited by S. Recksiegel, A. Hoang, S. Paul, e-conference C0610161 (2006), p. 331Google Scholar
  8. K. Jungmann, Acta Phys. Pol. B 33, 2049 (2002); E. Traykov et al., Nucl. Instrum. Meth. B 266, 4478 (2008)Google Scholar
  9. Recently laser cooling of barium and confinement of atoms in a magneto-optical trap was achieved, S. De, U. Dammalapati, K. Jungmann, L. Willmann, Phys. Rev. A (in press), e-print arXiv:0807.4100 Google Scholar
  10. W.A. van Wijngaarden, J. Li, Can. J. Phys. 73, 484 (1995)Google Scholar
  11. H.Katori, T. Ido, Y. Isoya, M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 1116 (1999)Google Scholar
  12. C.W.P. Palmer, J. Phys. B: At. Mol. Opt. Phys. 21, 1951 (1988); A. Aspect et al., J. Phys. B 24, 4077 (1991); W.H. King, Isotope Shifts in Atomic Spectra (New York, Plenum, 1984)Google Scholar
  13. S. Niggli, M.C.E. Huber, Phys. Rev. A 35, 2908 (1987)Google Scholar
  14. A. Bizzarri, M.C.E. Huber, Phys. Rev. A 42, 5422 (1990)Google Scholar
  15. J. Brust, A.C. Gallagher, Phys. Rev. A 52, 2120 (1995)Google Scholar
  16. A. Lurio, Phys. Rev. A 376, 136 (1963)Google Scholar
  17. N.D. Scielzo, J.R. Guest, E.C. Schulte, I. Ahmad, K. Bailey, D.L. Bowers, R.J. Holt, Z.-T. Lu, T.P. O’Connor, D.H. Potterveld, Phys. Rev. A 73, 010501(R) (2006)Google Scholar
  18. J. Migdalek, W.E. Baylis, Phys. Rev. A 42, 6897 (1990)Google Scholar
  19. P. Grundevik, M. Gustavsson, G. Olsson, T. Olsson, Z. Phys. A 312, 1 (1983)Google Scholar
  20. S. Gerstenkorn, J. Verges, J. Chevillard, Atlas du Spectre D’Absorption de la Molecule D’Iode (Laboratoire Aimé Cotton, Orsay, France, 1982); H. Knöckel, B. Bodermann, E. Tiemann, Eur. Phys. J. D 28, 199 (2004)Google Scholar
  21. The accuracy of an individual line in this region of the I2 spectrum is expected to be better than 0.1 MHz, H. Knöckel, private communication (2007)Google Scholar
  22. J.J. Curry, J. Phys. Chem. Ref. Data 33, 725 (2004)Google Scholar
  23. G. zu Putlitz, Ann. Phys. 11, 248 (1963)Google Scholar
  24. M. Gustavsson, G. Olsson, A. Rosén, Z. Phys. A 290, 231 (1979)Google Scholar
  25. J.A.R. Griffith, G.R. Isaak, R. New, M.P. Ralls, J. Phys. B: At. Mol. Phys. 14, 2769 (1981)Google Scholar
  26. W.H. King, J. Opt. Soc. Am. 53, 638 (1963)Google Scholar
  27. B.K. Sahoo, C. Sur, T. Beier, B.P. Das, R.K. Chaudhuri, D. Mukherjee, Phys. Rev. A 75, 042504 (2007)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • U. Dammalapati
    • 1
  • S. De
    • 1
  • K. Jungmann
    • 1
  • L. Willmann
    • 1
    Email author
  1. 1.Kernfysisch Versneller Instituut, University of GroningenGroningenThe Netherlands

Personalised recommendations