The European Physical Journal D

, Volume 54, Issue 2, pp 409–415 | Cite as

Simulations of single charged particle motion in external magnetic and electric fields

  • D. ErženEmail author
  • J. P. Verboncoeur
  • J. Duhovnik
  • N. Jelić
Topical issue: 23rd Symposium on Plasma Physics and Technology


In this paper we present a software package for computational modeling of single particle motion in static and dynamic external magnetic and electric fields and show applications of our package to general cases and particular cases of space, laboratory and fusion plasmas. In addition we further elaborate on the properties of a new concept named Larmor Center Trajectory that we introduced in our previous work [D. Erzen, J.P. Verboncoeur, J. Duhovnik, N. Jeli, Int. J. Multiphys. 1, 419 (2007)] as a generalization of the well known guiding center approximation, and show the ranges of applicability of this concept, especially in strongly inhomogeneous fields when adiabatic approximations break.


52.65.-y Plasma simulation 52.65.Cc Particle orbit and trajectory 01.55.+b General physics 03.50.De Classical electromagnetism, Maxwell equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G. Faraco, L. Bagriele, Comput. Educ. 49, 856 (2007) Google Scholar
  2. A. Jimoyiannis, V. Komis, Comput. Educ. 36, 183 (2001) Google Scholar
  3. T. Mzoughi, S.D. Herring, J.T. Foley, M.J. Morris, P.J. Gilbert, Comput. Educ. 49, 110 (2007) Google Scholar
  4. V. Ramasundaram, S. Grunwald, A. Mangeot, N.B. Comeford, C.M. Bliss, Comput. Educ. 45, 21 (2005) Google Scholar
  5. J.A. MacKinnon, J.E. Sicard, M.T. Tran, htran/physics/ Google Scholar
  6. V.S. Papadoniu, Google Scholar
  7. Google Scholar
  8. codes/s_parmos Google Scholar
  9. D. Erzen, J.P. Verboncoeur, J. Duhovnik, N. Jeli, Int. J. Multiphys. 1, 419 (2007) Google Scholar
  10. J.D. Jackson, Classical Electrodynamics (John Wiley and Sons Inc., 1975) Google Scholar
  11. M.D. Kruskal, J. Math. Phys. 3, 806 (1962) Google Scholar
  12. T.G. Northrop, J. Geophys. Res. 78 (1973) Google Scholar
  13. R.G. Littlejohn, J. Phys. Fluids 24, 1730 (1981) Google Scholar
  14. T.J.M. Boyd, J.J. Sanderson, The Physics of Plasmas (Cambridge University Press, 2003) Google Scholar
  15. J. Wesson, Tokamaks (Clarendon Press, Oxford, 1997) Google Scholar
  16. G. Cenacchi, A. Taroni, Internal report RT/TIB/88/5, Comitato Nazionale per la Ricerca e per lo Sviluppo delle Energia Nucleare e delle Energie Alternative (1988) Google Scholar
  17. M. Fichtmller, Improved modelling of impurity transport in tokamaks, JET-IR 99/02 (1999) Google Scholar
  18. G. Pereverzev, P.N. Yushmanov, ASTRA Automated System for Transport Analysis, IPP Report 5/98 (2002) Google Scholar
  19. R. Simonini, G. Corrigan, G. Radford, J. Spence, A. Taroni, Contrib. Plasma Phys. 34, 368 (1994) Google Scholar
  20. D.P. Coster et al., J. Nucl. Mater. 690, 241 (1997) Google Scholar
  21. V.B. Krapchev, Phys. Rev. Lett. 42, 497 (1979) Google Scholar
  22. M.A. Raadu, J.J. Rasmussen, Astrophys. Space Sci. 144, 43 (1988) Google Scholar
  23. P.C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (IoP Publishing, Bristol, 2000) Google Scholar
  24. Chang et al., Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGCa, (1996) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • D. Eržen
    • 1
    Email author
  • J. P. Verboncoeur
    • 2
  • J. Duhovnik
    • 1
  • N. Jelić
    • 1
    • 3
  1. 1.University of Ljubljana, LECAD Laboratory, Faculty of Mechanical EngineeringLjubljanaSlovenia
  2. 2.Department of Nuclear EngineeringUniversity of CaliforniaBerkeleyUSA
  3. 3.Department of Theoretical PhysicsUniversity of InnsbruckInnsbruckAustria

Personalised recommendations