Advertisement

Microdischarges in ceramic foams and honeycombs

  • K. HenselEmail author
Topical issue: 23rd Symposium on Plasma Physics and Technology

Abstract

Microdischarges in spatially confined geometries, such as microcavities and micropores of various materials, present a promising method for the generation and maintenance of stable discharges at atmospheric pressure. They have been successfully used in many biomedical, environmental and industrial applications. The paper presents two relatively new types of discharges in confined volumes – a capillary microdischarge in ceramic foams and a sliding discharge inside the capillaries of ceramic honeycombs – and describes their basic physical properties and mechanisms. Microdischarges inside the microporous ceramic foams develop from the surface barrier discharge if the amplitude of the applied voltage reaches given threshold, but only for a specific pore size. Sliding discharge inside the honeycomb capillaries is produced by a combination of AC barrier discharge inside catalytic pellet bed coupled in series with DC powered honeycomb monolith. Both discharges produce relatively cold microplasmas with high level of non-equilibrium. The basic characteristics of the microdischarges, addressing the effects of the applied voltage, discharge power, pore size, length and diameter of the capillaries are discussed.

PACS

52.80.-s Electric discharges 52.75.-d Plasma devices 

References

  1. K.H. Becker, K.H. Schoenbach, J.G. Eden, J. Phys. D: Appl. Phys. 39, R55 (2006) Google Scholar
  2. K.H. Schoenbach, R. Verhappen, T. Tessnow, F.E. Peterkin, W.W. Byszewski, Appl. Phys. Lett. 68, 13 (1996) Google Scholar
  3. H.I. Park, T.I. Lee, K.W. Park, H.K. Baika, Appl. Phys. Lett. 82, 3191 (2003) Google Scholar
  4. P. Kurunczi, N. Abramzon, M. Figus, K. Becker, Acta Phys. Slovaca 54, 115 (2004) Google Scholar
  5. A.D. Koutsospyros, S.M. Yin, C. Christodoulatos, K. Becker, IEEE Trans. Plasma Sci. 33, 42 (2005) Google Scholar
  6. N.S. Panikov, S. Paduraru, R. Crowe, P.J. Ricatto, C. Christodoulatos, K. Becker, IEEE Trans. Plasma Sci. 30, 1424 (2002) Google Scholar
  7. J.H. Cho, I.G. Koo, M.Y. Choi, W.M. Lee, Appl. Phys. Lett. 92, 101504 (2008) Google Scholar
  8. S.J. Park, J.G. Eden, IEEE Trans. Plasma Sci. 33, 572 (2005) Google Scholar
  9. T. Kawasaki, Y. Nakayama, T. Yamauchi, IEEE Trans. Plasma Sci. 38, 1324 (2008) Google Scholar
  10. K. Hensel, Y. Matsui, S. Katsura, A. Mizuno, Czech. J. Phys. 54, C683 (2004) Google Scholar
  11. K. Hensel, S. Katsura, A. Mizuno, IEEE Trans. Plasma Sci. 33, 574 (2005) Google Scholar
  12. K. Hensel, V. Martisovits, Z. Machala, M. Janda, M. Lestinsky, P. Tardiveau, A. Mizuno, Plasma Process. Polym. 4, 682 (2007) Google Scholar
  13. K. Hensel, P. Tardiveau, IEEE Trans. Plasma Sci. 36, 980 (2008) Google Scholar
  14. Z. Machala, E. Marode, C.O. Laux, C.H. Kruger, J. Adv. Oxid. Technol. 7, 133 (2004) Google Scholar
  15. M. Lestinsky, K. Hensel, V. Martisovits, in Proceedings of 16th Symposium on Applications of Plasma Processes (SAPP XVI), Podbanske, Slovakia (2007), p. 217 Google Scholar
  16. K. Hensel, M. Lestinsky, Z. Machala, P. Tardiveau, in Proceedings of 11th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XI), Oléron, France (2008) CD-ROM Google Scholar
  17. J. Sawada, Y. Matsui, K. Hensel, I. Koyamoto, K. Takashima, S. Katsura, A. Mizuno, in Recent Development in Applied Electrostatics, edited by S. Keping, Y. Gefei (Elsevier, 2004), p. 128 Google Scholar
  18. I.G. Koo, W.M. Lee, Electrochem. Commun. 9, 2325 (2007) Google Scholar
  19. I.G. Koo, M.Y. Choi, J.H. Kim, J.H. Cho, W.M. Lee, Jpn J. Appl. Phys. 47, 4705 (2008) Google Scholar
  20. M. Kraus, B. Eliasson, U. Kogelschatz, A. Wokaun, Chem. Phys. Chem. 3, 29 (2001) Google Scholar
  21. H.H. Kim, in Application of Non-thermal Plasma in Environmental Protection, Ph.D. Thesis, Toyohashi University of Technology, Toyohashi, Japan (2000) Google Scholar
  22. N. Blin-Simiand, P. Tardiveau, A. Risacher, F. Jorand, S. Pasquiers, Plasma Process. Polym. 2, 256 (2005) Google Scholar
  23. C. Ayrault, J. Barrault, N. Blin-Simiand, F. Jorand, S. Pasquiers, A. Rousseau, J.M. Tatibouët, Catal. Today 89, 75 (2004) Google Scholar
  24. G.N. Tsikrikas, A.A. Serafetinides, J. Phys. D: Appl. Phys. 9, 2806 (1996) Google Scholar
  25. S.N. Tskhai, D.A. Akimov, S.V. Mitko, V.N. Ochkin, A.Yu. Serdyuchenko, D.A. Sidorov-Biryukov, D.V. Sinyaev, A.M. Zheltikov, J. Raman Spectrosc. 32, 177 (2001) Google Scholar
  26. K.K. Trusov, J. Phys. D: Appl. Phys. 39, 335 (2006) Google Scholar
  27. C. Louste, G. Artana, E. Moreau, G. Touchard, J. Electrostat. 63, 615 (2005) Google Scholar
  28. E. Moreau, C. Louste, G. Artana, M. Forte, G. Touchard, Plasma Process. Polym. 3, 697 (2006) Google Scholar
  29. R. Sosa, H. Kelly, D. Grondona, A. Marquez, V. Lago, G. Artana, J. Phys. D: Appl. Phys. 41, 035202 (2008) Google Scholar
  30. E. Moreau, C. Louste, G. Touchard, J. Electrostat. 66, 107 (2008) Google Scholar
  31. E. Moreau, R. Sosa, G. Artana, J. Phys. D: Appl. Phys. 41, 115204 (2008) Google Scholar
  32. K. Hensel, S. Sato, A. Mizuno, IEEE Trans. Plasma Sci. 36, 1282 (2008) Google Scholar
  33. S. Sato, H. Yamauchi, K. Takashima, A. Mizuno, in Proceedings of 28th International Conference on Phenomena in Ionized Gases (ICPIG XXVIII), Prague, Czech Republic, (2007), p. 1338 Google Scholar
  34. S. Sato, K. Hensel, H. Yamauchi, K. Takashima, A. Mizuno, in Proceedings of 31st Annual Meeting of Institute of Electrostatics of Japan, Tsukuba, Japan (2007), p. 1 Google Scholar
  35. C.O. Laux, T.G. Spence, C.H. Kruger R.N. Zare, Plasma Sources Sci. Technol. 12, 125 (2003) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Division of Environmental Physics, Department of Astronomy, Earth Physics and MeteorologyFaculty of Mathematics, Physics and Informatics, Comenius UniversityBratislavaSlovakia

Personalised recommendations