Advertisement

The European Physical Journal D

, Volume 53, Issue 1, pp 59–62 | Cite as

O2 photodesorption from a Ag8O 2 - cluster

  • K. Koyasu
  • M. Niemietz
  • W. Westhäuser
  • G. GanteförEmail author
Clusters and Nanostructures

Abstract

The decay path of an Ag8(O2)- cluster photoexcited by a 3.1 eV photon is elucidated using time-resolved photoelectron spectroscopy. Photoabsorption results in the formation of an excited state giving rise to a peak in the photoelectron spectra with well-resolved vibrational finestructure. With a lifetime of about 100 fs this bound state decays into an anti-bonding state which dissociates into O2 and Ag 8 - on a timescale of 10 ps. In the photoelectron spectra, this corresponds to a broad maximum shifting gradually towards higher binding energy while the O2 and Ag 8 - separate. Finally, the spectrum of bare Ag 8 - appears. This process is unique to small clusters, because on metal surfaces excited state lifetimes are too short to allow for direct dissociation.

PACS

68.43.Tj Photon stimulated desorption 78.47.J- Ultrafast pump/probe spectroscopy 33.80.Eh Autoionization, photoionization, and photodetachment 36.40.-c Atomic and molecular clusters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Watanabe, D. Menzel, N. Nilius, H.-J. Freund, Chem. Rev. 106, 4301 (2006)Google Scholar
  2. F. M. Zimmermann, W. Ho, Surf. Sci. Rep. 22, 127 (1995)Google Scholar
  3. P. Saalfrank, Chem. Rev. 106, 4116 (2006)Google Scholar
  4. C. Frischkorn, M. Wolf, Chem. Rev.106, 4207 (2006)Google Scholar
  5. J.A. Misewich, T.F. Heinz, D.M. Newns, Phys. Rev. Lett. 68, 3737 (1992)Google Scholar
  6. W.A. De Heer, Rev. Mod. Phys. 65, 611 (1993)Google Scholar
  7. D. Menzel, R. Gomer, J. Chem. Phys. 41, 3311 (1964)Google Scholar
  8. P.A. Redhead, Can. J. Phys. 42, 886 (1964)Google Scholar
  9. H. Petek, M.J. Weida, H. Nagano, S. Ogawa, Science 288, 1402 (2000)Google Scholar
  10. N. Pontius, M. Neeb, W. Eberhardt, G. Lüttgens, P.S. Bechthold, Phys. Rev. B 67, 035425 (2003)Google Scholar
  11. V.V. Kresin, Y.N. Ovchinnikov, Phys. Rev. B 73, 115412 (2006)Google Scholar
  12. G. Lüttgens, N. Pontius, P.S. Bechthold, M. Neeb, W. Eberhardt, Phys. Rev. Lett. 88, 076102 (2002)Google Scholar
  13. M. Neeb, J. Stanzel, N. Pontius, W. Eberhardt, G. Lüttgens, P.S. Bechthold, C. Friedrich, J. Electron. Spec. Relat. Phenom. 144, 91 (2005)Google Scholar
  14. P. Radcliffe, A. Przystawik, T. Diederich, T. Döppner, J. Tiggesbäumker, K.-H. Meiwes-Broer, Phys. Rev. Lett. 92, 173403 (2004)Google Scholar
  15. M. Niemietz, M. Engelke, Y.D. Kim, G. Ganteför, Phys. Rev. B 75, 085438 (2007)Google Scholar
  16. Y.D. Kim, G. Ganteför, Chem. Phys. Lett. 383, 80 (2004)Google Scholar
  17. M. Niemietz, M. Engelke, Y.D. Kim, G. Ganteför, Appl. Phys. A 87, 615 (2007)Google Scholar
  18. M. Niemietz, K. Koyasu, G. Ganteför, Y.D. Kim, Chem. Phys. Lett. 438, 263 (2007).Google Scholar
  19. H. Handschuh, C.-Y. Cha, P.S. Bechthold, G. Ganteför, W. Eberhardt, J. Chem. Phys. 102, 6406 (1995)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • K. Koyasu
    • 1
  • M. Niemietz
    • 1
  • W. Westhäuser
    • 1
  • G. Ganteför
    • 1
    Email author
  1. 1.Department of PhysicsUniversity of KonstanzKonstanzGermany

Personalised recommendations