Advertisement

The European Physical Journal D

, Volume 54, Issue 2, pp 281–286 | Cite as

N–O mix optimisation in low energy dense DC glow surface Ti conditioning

  • E. E. Granda-Gutiérrez
  • R. López-CallejasEmail author
  • R. Peña-Eguiluz
  • A. Mercado-Cabrera
  • A. E. Muñoz-Castro
  • R. Valencia A.
  • S. R. Barocio
  • A. de la Piedad-Beneitez
  • H. Millán-Flores
Topical issue: 23rd Symposium on Plasma Physics and Technology

Abstract

Samples of pure titanium have been treated by means a plasma immersed ion implantation (PIII) process in a DC glow discharge in pure oxygen and in different nitrogen-oxygen mixtures. In contrast with conventional voltage supply based glow PIII, the present study has been conducted with a novel specifically designed high current supply which allows a high electron density to be kept constant, regardless of gas pressure variations, within the operational ranks. Thus, the acquired sample characteristics can be more clearly ascribed to the chemical composition of the mixture. One stratified TiO2 (rutile) and TiN0.26 layer was identified from XRD and Raman spectroscopy, both of these compounds reputedly being highly biocompatible. The superficial hardness of the samples was improved up to more than five times that of the untreated reference sample, namely, ∼1600 Vickers microhardness (10 g load) thanks to a 2–6 μm deep implanted layer. These optimal results have been obtained from an 80% nitrogen 20% oxygen mixture at 1×10-2 torr. Furthermore, with this gas proportion, the best roughness finishing of the sample set was accomplished, which can be relevant for biocompatible applications.

PACS

87.85.J- Biomaterials 52.77.Dq Plasma-based ion implantation and deposition 62.20.Qp Friction, tribology, and hardness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.R. Askeland, P.P. Phulé, The Science and Engineering of Materials, 4th edn. (Thomson-Engineering, 2002) Google Scholar
  2. X. Tian, C. Gong, S. Yang, Z. Luo, R.K.-Y. Fu, P.K. Chu, IEEE Trans. Plasma Sci. 34, 1235 (2006) Google Scholar
  3. X. Liu, P.K. Chu, C. Ding, Mater. Sci. Eng. 47, 49 (2004) Google Scholar
  4. P.A. Lilley, G.W. Blunn, in Proceedings of the IEE Conference Publication No. 435: 5th International Conference on FACTORY 2000 (1997) Google Scholar
  5. R.N. Tarrant, S. Devasahayam, D.R. McKenzie, M.M.M. Bilek, Plasma Sources Sci. Technol. 15, 384 (2006) Google Scholar
  6. S. Mändl, D. Krause, G. Thorwarth, R. Sader, F. Zeilhofer, H.H. Horch, B. Rauschenbach, Surf. Coat. Technol. 142–144, 1046 (2001) Google Scholar
  7. E.E. Granda-Gutiérrez, R. López-Callejas, R. Peña-Eguiluz, A. Mercado-Cabrera, R. Valencia A., S.R. Barocio, O.G. Godoy-Cabrera, A. de la Piedad-Beneitez, J.S. Benítez-Read, J.O. Pacheco-Sotelo, in Proceedings of the 25th IASTED International Conference on Modelling, Identification and Control (2006), Vol. 500, p. 255 Google Scholar
  8. E.E. Granda-Gutiérrez, R. López-Callejas, R. Peña-Eguiluz, J.S. Benítez-Read, J.O. Pacheco-Sotelo, R. Valencia A., A. Mercado-Cabrera, S.R. Barocio, Surf. Coat. Technol. 201, 5454 (2007) Google Scholar
  9. K. Takechi, S. Otsuki, IEEE Trans. Semiconductor Manufacturing 19, 286 (2006) Google Scholar
  10. Y.-K. Pu, Z.-G. Guo, Z.-D. Kang, J. Ma, Z.-C. Guan, G.-Y. Zhang, E.-G. Wang, Pure Appl. Chem. 74, 459 (2002) Google Scholar
  11. L.H. Li, Y.Q. Wu, Y.H. Zhang, R.K.Y. Fu, P.K. Chu, J. Appl. Phys. 97, 113301 (2005) Google Scholar
  12. R.S. Pessoa, G. Murakami, G. Petraconi, H.S. Maciel, I.C. Oliveira, K.G. Grigorov, Braz. J. Phys. 36, 332 (2006) Google Scholar
  13. R. López-Callejas, R. Valencia-Alvarado, E. Muñoz-Castro, O.G. Godoy-Cabrera, J.L. Tapia Fabela, Rev. Sci. Instrum. 72, 4277 (2002) Google Scholar
  14. S. Leigh, A. Lin, C.C. Berndt, J. Am. Ceram. Soc. 80, 2093 (1997) Google Scholar
  15. H. Du, H. Chen, B.K. Moom, J.H. Shin, S.W. Lee, AZo J. Mat. Online 1, 1 (2005) Google Scholar
  16. M. Hassan, A. Qayyum, R. Ahmad, G. Murtaza, M. Zakaullah, J. Phys. D: Appl. Phys. 40, 769 (2007) Google Scholar
  17. R.T. Downs, M.Hall-Wallace, The American Mineralogist Crystal Structure Database (titanium) (2003) Google Scholar
  18. R.T. Downs, M. Hall-Wallace, The American Mineralogist Crystal Structure Database (rutile) (2003) Google Scholar
  19. Joint Committee on Powder Diffraction Standards (JCPDS) and International Centre for Diffraction Data (ICDD) database pdf 44-1095, 1995 Google Scholar
  20. Joint Committee on Powder Diffraction Standards (JCPDS) and International Centre for Diffraction Data (ICDD) database pdf 17-386, 1995 Google Scholar
  21. S. Mändl, B. Rauschenbach, Surf. Coat. Technol. 156, 276 (2002) Google Scholar
  22. J.C. Parker, R.W. Siegel, J. Mater. Res. 5, 1246 (1990) Google Scholar
  23. M. Franck, J.P. Celis, J.R. Roos, J. Mater. Res. 10, 119 (1995) Google Scholar
  24. G. Thorwarth, S. Mändl, B. Rauschenbach, Surf. Coat. Technol. 136, 236 (2001) Google Scholar
  25. H.C. Barshilia, K.S. Rajam, J. Mater. Res. 19, 3196 (2004) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • E. E. Granda-Gutiérrez
    • 1
  • R. López-Callejas
    • 1
    • 2
    Email author
  • R. Peña-Eguiluz
    • 2
  • A. Mercado-Cabrera
    • 2
  • A. E. Muñoz-Castro
    • 2
  • R. Valencia A.
    • 2
  • S. R. Barocio
    • 2
  • A. de la Piedad-Beneitez
    • 1
  • H. Millán-Flores
    • 1
  1. 1.Instituto Tecnológico de TolucaEstado de MéxicoMéxico
  2. 2.Instituto Nacional de Investigaciones NuclearesDFMéxico

Personalised recommendations