The European Physical Journal D

, Volume 54, Issue 2, pp 195–204 | Cite as

DC discharges in atmospheric air for bio-decontamination – spectroscopic methods for mechanism identification

  • Z. MachalaEmail author
  • I. Jedlovský
  • L. Chládeková
  • B. Pongrác
  • D. Giertl
  • M. Janda
  • L. Šikurová
  • P. Polčic
Topical issue: 23rd Symposium on Plasma Physics and Technology


Three types of DC electrical discharges in atmospheric air (streamer corona, transient spark and glow discharge) were tested for bio-decontamination of bacteria and yeasts in water solution, and spores on surfaces. Static vs. flowing treatment of contaminated water were compared, in the latter the flowing water either covered the grounded electrode or passed through the high voltage needle electrode. The bacteria were killed most efficiently in the flowing regime by transient spark. Streamer corona was efficient when the treated medium flew through the active corona region. The spores on plastic foil and paper surfaces were successfully inactivated by negative corona. The microbes were handled and their population evaluated by standard microbiology cultivation procedures. The emission spectroscopy of the discharges and TBARS (thiobarbituric acid reactive substances) absorption spectrometric detection of the products of lipid peroxidation of bacterial cell membranes indicated a major role of radicals and reactive oxygen species among the bio-decontamination mechanisms.


52.80.Hc Glow; corona 52.80.Tn Other gas discharges 52.70.Kz Optical 87.64.-t Spectroscopic and microscopic techniques in biophysics and medical physics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R.S. Sigmond, B. Kurdelova, M. Kurdel, Czech. J. Phys. 49, 405 (1999) Google Scholar
  2. T.C. Montie, K. Kelly-Wintenberg, J.R. Roth, IEEE Trans. Plasma Sci. 28, 41 (2000) Google Scholar
  3. N.M. Efremov, B.Y. Adamiak, V.I. Blochin, S.J. Dadashev, K.I. Dmitriev, O.P. Gryaznova, V.F. Jusbashev, IEEE Trans. Plasma Sci. 28, 238 (2000) Google Scholar
  4. H. Ohkawa, T. Akitsu, M. Tsuji, H. Kimura, M. Kogoma, K. Fukushima, Surf. Coat. Technol. 200, 5829 (2006) Google Scholar
  5. A. Sharma, A. Pruden, O. Stan, G.J. Collins, IEEE Trans. Plasma Sci. 34, 1290 (2006) Google Scholar
  6. R.E.J. Sladek, E. Stoffels, J. Phys. D: Appl. Phys. 38, 1716 (2005) Google Scholar
  7. B.J. Park, K. Takatori, M.H. Lee, D.-W. Han, Y.I. Woo, H.J. Son, J.K. Kim, K.-H. Chung, S.O. Hyun, J.-C. Park, Surf. Coat. Technol. 201, 5738 (2007) Google Scholar
  8. N.S. Panikov, S. Paduraru, R. Crowe, P.J. Ricatto, C. Christodoulatos, K. Becker, IEEE Trans. Plasma Sci. 30, 1424 (2002) Google Scholar
  9. A.-M. Pointu, A. Ricard, B. Dodet, E. Odic, J. Larbre, M. Ganciu, J. Phys. D: Appl. Phys. 38, 1905 (2005) Google Scholar
  10. X. Lu, T. Ye, Y. Cao, Z. Sun, Q. Xiong, Z. Tang, Z. Xiong, J. Hu, Z. Jiang, Y. Pan, J. Appl. Phys. 104, 053309 (2008) Google Scholar
  11. R. Brandenburg, J. Ehlbeck, M. Stieber, T.V. Woedtke, J. Zeymer, O. Schlüter, K.-D. Weltmann, Contrib. Plasma Phys. 47, 72 (2007) Google Scholar
  12. M. Laroussi, F. Leipold, Int. J. Mass Spectrom. 233, 81 (2004) Google Scholar
  13. E. Stoffels, I.E. Kieft, R.E.J. Sladek, L.J.M. Van Den Bedem, E.P. Van Der Laan, M. Steinbuch, Plasma Sources Sci. Technol. 15, S169 (2006) Google Scholar
  14. G. Fridman, A.D. Brooks, M. Balasubramanian, A. Fridman, A. Gutsol, V.N. Vasilets, H.G. Friedman, Plasma Process. Polym. 4, 370 (2007) Google Scholar
  15. J. Vrajová, L. Chalupová, J. Čech, F. Krčma, P. Sťahel, Plasma Based Removal of Microbial Contamination of Paper, Int. Symp. Plasma Chemistry, Kyoto, Japan, August 2007, Chem. Listy 102, S1445–S1449 (2008) Google Scholar
  16. Z. Machala, M. Morvová, E. Marode, I. Morva, J. Phys. D: Appl. Phys. 33, 3198 (2000) Google Scholar
  17. Z. Machala, E. Marode, M. Morvová, P. Lukáč, Plasma Process. Polym. 2, 152 (2005) Google Scholar
  18. Z. Machala, I. Jedlovský, V. Martišovitš, IEEE Trans. Plasma Sci. 36, 918 (2008) Google Scholar
  19. Z. Machala et al., J. Mol. Spectrosc. 243, 194 (2007) Google Scholar
  20. R.S. Sigmond, M. Goldman, Corona discharge physics and applications, in Electrical Breakdown and Discharges in Gases, NATO ASI Series B: Physics, edited by E.E. Kunhardt, L.H. Luessen (Plenum: New York 1983), Vol. 89b, pp. 1–64 Google Scholar
  21. E. Marode, F. Bastien, M. Bakker, J. Appl. Phys. 50, 140 (1979) Google Scholar
  22. Z. Machala, E. Marode, C.O. Laux, C.H. Kruger, J. Adv. Oxid. Technol. 7, 133 (2004) Google Scholar
  23. A. Jaworek, A. Krupa, T. Czech, J. Phys. D: Appl. Phys. 29, 2439 (1996) Google Scholar
  24. P. Lukes, B.R. Locke, J. Phys. D: Appl. Phys. 38, 4074 (2005) Google Scholar
  25. P. Baroch, N. Saito, O. Takai, J. Phys D: Appl. Phys. 41, 085207 (2008) Google Scholar
  26. P. Bruggeman et al., Plasma Sources Sci. Technol. 17, 025012 (2008) Google Scholar
  27. S. Pekarek, V. Kriha, M. Pospisil, I. Viden, J. Phys. D: Appl. Phys. 34, 1 (2001) Google Scholar
  28. C.O. Laux, T.G. Spence, C.H. Kruger, R.N. Zare, Plasma Sources Sci. Technol. 12, 125 (2003) Google Scholar
  29. C.O. Laux, Radiation and Nonequilibrium Collisional-Radiative Models, von Karman Institute for Fluid Dynamics, Lecture Series 2002-07 (Rhode Saint-Genese, Belgium, 2002) Google Scholar
  30. J.B. Feix, B. Kalyaranaman, Photochem. Photobiol. 53, 39 (1991) Google Scholar
  31. G.J. Bachowski, T.J. Pintar, A.W. Girotti, Photochem. Photobiol. 53, 481 (1991) Google Scholar
  32. P.J. Howden, S.P. Faux, Carcinogenesis 17, 413 (1996) Google Scholar
  33. TBARS Assay Kit, Cayman Chemical Company, Catalog 10009055 (2007) Google Scholar
  34. M. Babincova, V. Altanerova, C. Altaner, Z. Bacova, P. Babinec, European Cells and Materials 3, 140 (2002) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Z. Machala
    • 1
    Email author
  • I. Jedlovský
    • 2
  • L. Chládeková
    • 2
  • B. Pongrác
    • 1
  • D. Giertl
    • 2
  • M. Janda
    • 1
  • L. Šikurová
    • 2
  • P. Polčic
    • 3
  1. 1.Division of Environmental PhysicsFaculty of Mathematics, Physics and Informatics, Comenius UniversityBratislavaSlovakia
  2. 2.Division of Biomedical PhysicsFaculty of Mathematics, Physics and Informatics, Comenius UniversityBratislavaSlovakia
  3. 3.Faculty of Natural Sciences, Comenius UniversityBratislavaSlovakia

Personalised recommendations