Advertisement

The European Physical Journal D

, Volume 54, Issue 2, pp 319–323 | Cite as

Hybrid computer simulations: electrical charging of dust particles in low-temperature plasma

  • P. BartošEmail author
  • J. Blažek
  • P. Jelínek
  • P. Špatenka
Topical issue: 23rd Symposium on Plasma Physics and Technology

Abstract

This paper is focused on the study of the electrical charging process of micron-sized particles immersed into low-temperature argon plasma by the methods of computer modelling. The hybrid computer simulations are performed for a set of particles with the radius up to \(20~{\rm \mu m}\) in order to determine the dependence of the electric charge on the surface of the particulate on its radius. This dependence seems to be linear. The distribution of the electric potential in the vicinity of the particulate is obtained from the fluid model. Afterwards, the non self-consistent particle simulation is performed in order to determine both the reaction rates and the electric charge on the surface of the particulate. The most important collision processes of charged particles in plasma and the appropriate dependence of the collision cross-section on the particle energy are considered (elastic scattering of electrons on neutrals, excitation of neutrals into all important energetic states, ionisation of Argon atoms by fast electrons, elastic scattering of positively charged ions etc.). The presented algorithm provides an effective way, how the key quantity in dusty plasma physics – electric charge on the surface of the particulate – can be determined.

PACS

52.65.Ww Hybrid methods 52.27.Lw Dusty or complex plasmas; plasma crystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Kersten, H. Deutsch, G.M.V. Kroesen, Int. J. Mass Spectrom. 233, 51 (2004) Google Scholar
  2. E.B. Tomme, D.A. Law, J.E. Annaratone, J.E. Allen, Phys. Rev. Lett. 85, 2518 (2000) Google Scholar
  3. V.E. Fortov, A.P. Nefedov, V.I. Molotkov, M.Y. Poustylnik, V.M. Torchinski, Phys. Rev. Lett. 233, 205002 (2001) Google Scholar
  4. B. Walch, M. Horanyi, S. Robertson, IEEE Trans. Plasma Sci. 22, 97 (1994) Google Scholar
  5. B. Walch, M. Horanyi, S. Robertson, Phys. Rev. Lett. 75, 838 (1995) Google Scholar
  6. P. Bartoš, R. Hrach, P. Jelínek, Vacuum 82, 220 (2007) Google Scholar
  7. P. Bartoš, R. Hrach, P. Jelínek, Contrib. Plasma Phys. 48, 406 (2008) Google Scholar
  8. A. Bogaerts, R. Gijbels, W. Goedheer, J. Appl. Phys. 38, 4404 (1999) Google Scholar
  9. M. Horváth, Ph.D. thesis, Charles University in Prague, 2002 Google Scholar
  10. H.R. Skulerud, Null collision method (Norwegian Inst. of Technology, Trondhaim, 1972) Google Scholar
  11. P.K. Shukla, A.A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol and Philadelphia, 2002) Google Scholar
  12. A.A. Samarian, S.V. Vladimirov, Phys. Rev. E 67, 066404 (2003) Google Scholar
  13. S.V. Vladimirov, N.F. Cramer, P.V. Schevchenko, Phys. Rev. E 60, 7369 (1999) Google Scholar
  14. S.V. Vladimirov, S.A. Maiorov, N.F. Cramer, Phys. Rev. E 63, 045401(R) (2001) Google Scholar
  15. A.A. Samarian, S.V. Vladimirov, Phys. Rev. Lett. 89, 229501 (2002) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • P. Bartoš
    • 1
    Email author
  • J. Blažek
    • 1
  • P. Jelínek
    • 1
    • 2
  • P. Špatenka
    • 1
    • 3
  1. 1.Department of PhysicsUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Institute of Physics of the Academy of Sciences of the Czech RepublicPragueCzech Republic
  3. 3.Technical University of LiberecLiberecCzech Republic

Personalised recommendations